在微分方程中什么是初始值条件和边界值条件?

在微分方程中什么是初始值条件和边界值条件?... 在微分方程中什么是初始值条件和边界值条件? 展开
 我来答
寇恋慕Ai
高粉答主

2019-07-30 · 关注我不会让你失望
知道答主
回答量:7
采纳率:0%
帮助的人:2161
展开全部

初始值条件是题目给出的数据,边界值条件给出的范围。

约束条件

微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。

若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。

偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。

扩展资料:

常微分方程的概念、解法、和其它理论很多,比如,方程和方程组的种类及解法、解的存在性和唯一性、奇解、定性理论等等。下面就方程解的有关几点简述一下,以了解常微分方程的特点。

求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。

后来的发展表明,能够求出通解的情况不多,在实际应用中所需要的多是求满足某种指定条件的特解。当然,通解是有助于研究解的属性的,但是人们已把研究重点转移到定解问题上来。

一个常微分方程是不是有特解呢?如果有,又有几个呢?这是微分方程论中一个基本的问题,数学家把它归纳成基本定理,叫做存在和唯一性定理。因为如果没有解,而我们要去求解,那是没有意义的;如果有解而又不是唯一的,那又不好确定。因此,存在和唯一性定理对于微分方程的求解是十分重要的。

大部分的常微分方程求不出十分精确的解,而只能得到近似解。当然,这个近似解的精确程度是比较高的。另外还应该指出,用来描述物理过程的微分方程,以及由试验测定的初始条件也是近似的,这种近似之间的影响和变化还必须在理论上加以解决。

通常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。

应该说,应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。

参考资料来源:百度百科-微分方程

麻木y1
高粉答主

2019-07-29 · 每个回答都超有意思的
知道小有建树答主
回答量:765
采纳率:100%
帮助的人:21.1万
展开全部

初始值条件是模拟开始初始化参数时赋予变量的初值。

边界值条件是指在求解区域边界上所求解的变量或其导数随时间和地点的变化规律。边界条件是控制方程有确定解的前提,对于任何问题,都需要给定边界条件。边界条件的处理,直接影响了计算结果的精度。而解微分方程要有定解,就一定要引入条件, 这些附加条件称为定解条件。

扩展资料:

微分方程的特点:

求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。

后来的发展表明,能够求出通解的情况不多,在实际应用中所需要的多是求满足某种指定条件的特解。当然,通解是有助于研究解的属性的,但是人们已把研究重点转移到定解问题上来。

一个常微分方程是不是有特解呢?如果有,又有几个呢?这是微分方程论中一个基本的问题,数学家把它归纳成基本定理,叫做存在和唯一性定理。因为如果没有解,而我们要去求解,那是没有意义的;如果有解而又不是唯一的,那又不好确定。因此,存在和唯一性定理对于微分方程的求解是十分重要的。

大部分的常微分方程求不出十分精确的解,而只能得到近似解。当然,这个近似解的精确程度是比较高的。另外还应该指出,用来描述物理过程的微分方程,以及由试验测定的初始条件也是近似的,这种近似之间的影响和变化还必须在理论上加以解决。

通常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。

应该说,应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。

参考资料来源:百度百科-边界值条件

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
yxue
推荐于2017-09-13 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.2万
采纳率:94%
帮助的人:2978万
展开全部
众所周知,解微分方程时其通解都包含有未知常数;
这些未知常数是由微分方程的定解条件确定的。
微分方程的最后的解既满足微分方程又满足定解条件。
微分方程的定解条件分为两类:一类是初始值条件一类
是边界值条件。当微分方程中的未知数的自变量是时间时,
那么定解条件是初始值条件;当自变量为空间变量(如空间位置)
时,其定解条件为边界条件。初始条件如:初始位移、初始速度等;
边值条件如弹性梁的简支端、固定端的位移限制等。对于混合型的
偏微分方程问题,两种边界条件可以都存在。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式