已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为43,半径小于5.(1)求直线PQ与圆C的
已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为43,半径小于5.(1)求直线PQ与圆C的方程;(2)若直线l∥PQ,且l与圆C交于点A、B,∠A...
已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为43,半径小于5.(1)求直线PQ与圆C的方程;(2)若直线l∥PQ,且l与圆C交于点A、B,∠AOB=90°,求直线l的方程.
展开
展开全部
(1)直线PQ的方程为y-3=
×(x+1)
即直线PQ的方程为x+y-2=0,
C在PQ的中垂线y-
=1×(x-
)
即y=x-1上,
设C(n,n-1),则r2=|CQ|2=(n+1)2+(n-4)2,
由题意,有r2=(2
)2+|n|2,
∴n2+12=2n2-6n+17,
∴n=1或5(舍去),r2=13或37(舍去),
∴圆C的方程为(x-1)2+y2=13.
(2)设直线l的方程为x+y+m=0,
由
,
得2x2+(2m-2)x+m2-12=0,
设A(x1,y1),B(x2,y2),
则x1+x2=1-m,x1x2=
,
∵∠AOB=90°,∴x1x2+y1y2=0
∴x1x2+(x1+m)(x2+m)=0,整理得m2+m-12=0,
∴m=3或-4(均满足△>0),
∴l的方程为x+y+3=0或x+y-4=0.
3+2 |
?1?4 |
即直线PQ的方程为x+y-2=0,
C在PQ的中垂线y-
3?2 |
2 |
4?1 |
2 |
即y=x-1上,
设C(n,n-1),则r2=|CQ|2=(n+1)2+(n-4)2,
由题意,有r2=(2
3 |
∴n2+12=2n2-6n+17,
∴n=1或5(舍去),r2=13或37(舍去),
∴圆C的方程为(x-1)2+y2=13.
(2)设直线l的方程为x+y+m=0,
由
|
得2x2+(2m-2)x+m2-12=0,
设A(x1,y1),B(x2,y2),
则x1+x2=1-m,x1x2=
m2?12 |
2 |
∵∠AOB=90°,∴x1x2+y1y2=0
∴x1x2+(x1+m)(x2+m)=0,整理得m2+m-12=0,
∴m=3或-4(均满足△>0),
∴l的方程为x+y+3=0或x+y-4=0.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询