已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图像上相邻的两个最高点间的距离为2π
1个回答
展开全部
∵其图像上相邻的两个最高点间的距离为2π
∴ω=1
f(x)=sin(x+φ)
∵函数f(x)=sin(x+φ)是R上的偶函数;
∴φ=π/2+kπ,k∈Z
∵0≤φ≤π,
∴,φ=π/2,
∴f(x)=sin(x+π/2)
f(α+π/3)=sin(α+π/3+π/2)=cos(π/3+α)=1/3
∵α为锐角,
∴α+π/3∈(π/3,5π/6)
sin(π/3+α)=√1-(1/3)²=2√2/3
sin(3π/2+α)
=-sin(π/2+α)
=-cosα
=-cos(α+π/3-π/3)
=sin(α+π/3)*sin(π/3)-cos(α+π/3)*cos(π/3)
=(2√2/3)*(√3/2)-(1/3)*(1/2)
=(2√6-1)/6
∴ω=1
f(x)=sin(x+φ)
∵函数f(x)=sin(x+φ)是R上的偶函数;
∴φ=π/2+kπ,k∈Z
∵0≤φ≤π,
∴,φ=π/2,
∴f(x)=sin(x+π/2)
f(α+π/3)=sin(α+π/3+π/2)=cos(π/3+α)=1/3
∵α为锐角,
∴α+π/3∈(π/3,5π/6)
sin(π/3+α)=√1-(1/3)²=2√2/3
sin(3π/2+α)
=-sin(π/2+α)
=-cosα
=-cos(α+π/3-π/3)
=sin(α+π/3)*sin(π/3)-cos(α+π/3)*cos(π/3)
=(2√2/3)*(√3/2)-(1/3)*(1/2)
=(2√6-1)/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询