如图1,△ABC与△ADE都是以点A为顶点的等腰三角形,且∠BAC=∠DAE,BD⊥AD,ED的延长线交BC于点F,探究线

如图1,△ABC与△ADE都是以点A为顶点的等腰三角形,且∠BAC=∠DAE,BD⊥AD,ED的延长线交BC于点F,探究线段BF与CF的数量关系,并说明理由.(如果你经过... 如图1,△ABC与△ADE都是以点A为顶点的等腰三角形,且∠BAC=∠DAE,BD⊥AD,ED的延长线交BC于点F,探究线段BF与CF的数量关系,并说明理由.(如果你经过思考后不能找到问题的答案,可选择以下两个问题来完成)①将△ABC与△ADE改为等边三角形,其他条件不变,如图2.②将原题改为探究线段BD与EC的数量关系. 展开
 我来答
塔幻丝r7
2014-10-22 · TA获得超过201个赞
知道答主
回答量:172
采纳率:33%
帮助的人:138万
展开全部
连接CE,在EF上截取CN=CF,
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
在△BAD和△CAE中
AB=AC
∠BAD=∠EAC
AD=AE

∴△BAD≌△CAE(SAS),
∴BD=CE,∠ADB=∠AEC=90°,
∴∠AED+∠DEC=90°,∠BDF+∠ADE=180°-∠BDA=90°,
∵AD=AE,
∴∠ADE=∠AED,
∴∠BDF=∠NEC,
在△BDF和△CEN中,
∠BFD=∠CNE
∠BDF=∠CEN
BD=CE

∴△BDF≌△CEN(AAS),
∴BF=CN=CF,
即BF=CF.
陈荣飞enjoy
2017-09-23
知道答主
回答量:4
采纳率:0%
帮助的人:3577
引用Kyoya兰IM3的回答:
连接CE,在EF上截取CN=CF,∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△BAD和△CAE中AB=AC∠BAD=∠EACAD=AE∴△BAD≌△CAE(SAS),∴BD=CE,∠ADB=∠AEC=90°,∴∠AED+∠DEC=90°,∠BDF+∠ADE=180°-∠BDA=90°,∵AD=AE,∴∠ADE=∠AED,∴∠BDF=∠NEC,在△BDF和△CEN中,∠BFD=∠CNE∠BDF=∠CENBD=CE,∴△BDF≌△CEN(AAS),∴BF=CN=CF,即BF=CF.
展开全部
啦啦啦,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式