已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①
已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc>0;③a-2b+4c<0;④8a...
已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc>0;③a-2b+4c<0;④8a+c>0.其中正确结论的是______.
展开
1个回答
展开全部
根据图象可得:抛物线开口向上,则a>0.抛物线与y交与负半轴,则c<0,
对称轴:x=-
>0,
①∵它与x轴的两个交点分别为(-1,0),(3,0),
∴对称轴是x=1,
∴-
=1,
∴b+2a=0,
故①错误;
②∵a>0,
∴b<0,
∵c<0,
∴abc>0,故②正确;
③∵a-b+c=0,
∴c=b-a,
∴a-2b+4c=a-2b+4(b-a)=2b-3a,
又由①得b=-2a,
∴a-2b+4c=-7a<0,
故此选项正确;
④根据图示知,当x=4时,y>0,
∴16a+4b+c>0,
由①知,b=-2a,
∴8a+c>0;
故④正确;
故正确为:②③④.
故答案是:②③④.
对称轴:x=-
b |
2a |
①∵它与x轴的两个交点分别为(-1,0),(3,0),
∴对称轴是x=1,
∴-
b |
2a |
∴b+2a=0,
故①错误;
②∵a>0,
∴b<0,
∵c<0,
∴abc>0,故②正确;
③∵a-b+c=0,
∴c=b-a,
∴a-2b+4c=a-2b+4(b-a)=2b-3a,
又由①得b=-2a,
∴a-2b+4c=-7a<0,
故此选项正确;
④根据图示知,当x=4时,y>0,
∴16a+4b+c>0,
由①知,b=-2a,
∴8a+c>0;
故④正确;
故正确为:②③④.
故答案是:②③④.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |