(1)阅读下面材料: 点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣。当A、B两点中
(1)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣。当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣...
(1)阅读下面材料: 点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣。当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时,如图2,点A、B都在原点的右边∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;如图3,点A、B都在原点的左边,∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;如图4,点A、B在原点的两边,∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣=" a" +(-b)=∣a-b∣;(2)回答下列问题: 小题1:数轴上表示2和5的两点之间的距离是_________,数轴上表示-2和-5的两点之间的距离是_________,数轴上表示1和-3的两点之间的距离是_______;(共3分) 小题2:数轴上表示x和-1的两点A和B之间的距离是_____,如果∣AB∣=2,那么x为_ ___ (共4分)小题3:当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,相应的x的值是___________;此时代数式∣x+1∣+∣x-2∣+∣x+3∣的值是_____________.(6分)
展开
1个回答
展开全部
小题1:① 3 、3、4 小题2:②|x+1| 1或-3 小题3:③-1 5 |
①②直接根据数轴上A、B两点之间的距离|AB|=|a-b|.代入数值运用绝对值即可求任意两点间的距离. ③根据绝对值的性质,可得到一个一元一次不等式组,通过求解,就可得出x的取值范围. 解:①数轴上表示2和5的两点之间的距离是|2-5|=3,数轴上表示-2和-5的两点之间的距离是|-2-(-5)|=3.数轴上表示1和-3的两点之间的距离是|1-(-3)|=4. ②数轴上表示x和-1的两点A和B之间的距离是|x-(-1)|=|x+1|,如果|AB|=2,那么x为1或-3. ③当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,,∴x+1≥0,x-2≤0,x+3≥0,∴-1≤x≤2.即当x取=-1时为最小值,此时代数式值为5 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询