在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:点E

在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:点E是边BC的中点;(2)若EC=3,BD=,求⊙O... 在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:点E是边BC的中点;(2)若EC=3,BD= ,求⊙O的直径AC的长. 展开
 我来答
星龙是0B
推荐于2016-08-07 · 超过62用户采纳过TA的回答
知道答主
回答量:112
采纳率:100%
帮助的人:109万
展开全部
24.(1)证明:连接CD,∵AC是⊙O的直径,∠ACB=90°,
∴BC是⊙O的切线,∵DE是⊙O的切线,
∴DE=CE,∴∠EDC=∠ECD,∵∠ADC=90°,
∴∠BDC=90°,∴∠B+∠DCB=90°,
∠BDE+∠EDC=90°,∴∠B=∠BDE,
∴BE=DE,∴BE=CE,即点E是BC的中点。
(2)∵EC=3,∴BC=6, BD=
在Rt△BCD中,cosB= = = .在Rt△ABC中,cosB= ,∴AB= = .
= = =18,∴AC= .

(1)连接CD,由∠ACB=90°得BC是⊙O的切线,再有DE是⊙O的切线,根据切线长相等可得DE=CE,所以∠EDC=∠ECD。因为∠B+∠DCB=90°,∠BDE+∠EDC=90°,根据等角的余角相等可得∠B=∠BDE,所以BE=DE,结合DE=CE,所以BE=CE,即点E是BC的中点。
(2)根据勾股定理求得BD的长,再解直角三角形△BCD、△ABC求得AB的长,最后根据勾股定理即可求得AC的长。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式