已知函数f(x)=2|x-m|和函数g(x)=x|x-m|+2m-8.(Ⅰ)若m=2,求函数g(x)的单调区间;(Ⅱ)若方程f

已知函数f(x)=2|x-m|和函数g(x)=x|x-m|+2m-8.(Ⅰ)若m=2,求函数g(x)的单调区间;(Ⅱ)若方程f(x)=2|m|在x∈[-4,+∞)恒有唯一... 已知函数f(x)=2|x-m|和函数g(x)=x|x-m|+2m-8.(Ⅰ)若m=2,求函数g(x)的单调区间;(Ⅱ)若方程f(x)=2|m|在x∈[-4,+∞)恒有唯一解,求实数m的取值范围;(Ⅲ)若对任意x1∈(-∞,4],均存在x2∈[4,+∞),使得f(x1)=g(x2)成立,求实数m的取值范围. 展开
 我来答
余日享春秋6071
推荐于2016-12-01 · 超过56用户采纳过TA的回答
知道答主
回答量:87
采纳率:100%
帮助的人:132万
展开全部
(Ⅰ)m=2时,g(x)=
x2?2x?4  (x≥2)
?x2+2x?4(x<2)

函数g(x)的单调增区间为(-∞,1),(2,+∞),单调减区间为(1,2).
(Ⅱ)由f(x)=2|x-m|在x∈[-4,+∞)恒有唯一解,2|x-m|=2|m|,得|x-m|=|m|在x∈[-4,+∞)
恒有唯一解.当x-m=-m时,得x=0∈[-4,+∞);
当x-m=m时,得x=2m,则2m=0或2m<-4,即m<-2或m=0.
综上,m的取值范围是m<-2或m=0.
(Ⅲ)f(x)=
2x?m (x≥m)
2m?x(x<m)
,则f(x)的值域应是g(x)的值域的子集.
①当4≤m≤8时,f(x)在(-∞,4]上单调减,
故f(x)≥f(4)=2m-4,g(x)在[4,m]上单调减,[m,+∞)上单调增,
故g(x)≥g(m)=2m-8,
所以2m-4≥2m-8,解得4≤m≤5或6≤m≤8.
②当m>8时,f(x)在(-∞,4]上单调减,
故f(x)≥f(4)=2m-4,g(x)在[4,
m
2
]
单调增,[
m
2
,m]
上单调减,[m,+∞)上单调增,g(4)=4m-16>g(m)=2m-8
故g(x)≥g(m)=2m-8,所以2m-4≥2m-8,解得4≤m≤5或m≥6.
③0<m<4时,f(x)在(-∞,m]上单调减,[m,4]上单调增,故f(x)≥f(m)=1.g(x)在[4,+∞)上单调增,故g(x)≥g(4)=8-2m,
所以8-2m≤1,即
7
2
≤m<4

④m≤0时,f(x)在(-∞,m]上单调减,[m,4]上单调增,故f(x)≥f(m)=1.g(x)在[4,+∞)上单调增,
故g(x)≥g(4)=8-2m,所以8-2m≤1,即m≥
7
2
.(舍去)
综上,m的取值范围是[
7
2
,5]∪[6,+∞)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式