设a,b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12,则这个直角三角形的斜边长为33

设a,b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12,则这个直角三角形的斜边长为33.... 设a,b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12,则这个直角三角形的斜边长为33. 展开
 我来答
天使萌584JC
2014-11-01 · 超过69用户采纳过TA的回答
知道答主
回答量:121
采纳率:0%
帮助的人:147万
展开全部
∵a,b是一个直角三角形两条直角边的长
设斜边为c,
∴(a2+b2)(a2+b2+1)=12,根据勾股定理得:c2(c2+1)-12=0
即(c2-3)(c2+4)=0,
∵c2+4≠0,
∴c2-3=0,
解得c=
3
或c=-
3
(舍去).
则直角三角形的斜边长为
3

故答案为:
3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式