方阵A可逆的充分必要条件是什么?

 我来答
古代圣翼龍
推荐于2018-07-12 · TA获得超过3.1万个赞
知道小有建树答主
回答量:700
采纳率:97%
帮助的人:342万
展开全部
方阵A可逆的充分必要条件有以下:
①|A|≠0。并且当A可逆时,有A^-1=A*/|A|。(A*是A的伴随矩阵,A^-1是A的逆矩阵)
②对于n阶矩阵A,存在n阶矩阵B,使AB=E(或BA=E),并且当A可逆时,B=A^-1。
③A可以经过有限次初等变化为单位矩阵。
④A可以表示为有限个初等矩阵的乘积。
⑤A可以只经过初等行变换化为单位矩阵E。
轮看殊O
高粉答主

2021-09-09 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:747万
展开全部

n阶矩阵A可逆的充要条件

1、|A|不等于0。

2、r(A)=n。

3、A的列(行)向量组线性无关。

4、A的特征值中没有0。

5、A可以分解为若干初等矩阵的乘积。

矩阵A为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。

n阶矩阵A可逆介绍:

数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn。

元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。

矩阵分解是将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积 ,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友5c191cd
2021-01-02 · TA获得超过1126个赞
知道答主
回答量:1
采纳率:0%
帮助的人:838
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
秒懂百科
2019-12-25 · TA获得超过5.9万个赞
知道大有可为答主
回答量:25.3万
采纳率:88%
帮助的人:1.2亿
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式