置信区间与假设检验有什么联系
2个回答
展开全部
联系:二者都属于推断统计——利用样本的数据得到样本统计量(statistic),然后做出对总体参数(parameter)的论断。
用统计量推断参数时,如果参数未知,则这种推断叫参数估计——用统计量估计未知的参数;如果参数已知(或假设已知),需要利用统计量检验已知的参数是否靠谱,此时的统计推断即为假设检验。
理论描述
置信区间是一种常用的区间估计方法,所谓置信区间就是分别以统计量的置信上限和置信下限为上下界构成的区间。对于一组给定的样本数据,其平均值为μ,标准偏差为σ,则其整体数据的平均值的100(1-α)%置信区间为(μ-Ζα/2σ , μ+Ζα/2σ) ,其中α为非置信水平在正态分布内的覆盖面积 ,Ζα/2即为对应的标准分数。
以上内容参考:百度百科-置信区间
展开全部
1、区别是:用统计量推断参数时,如果参数未知,则这种推断叫参数估计——用统计量估计未知的参数;如果参数已知(或假设已知),需要利用统计量检验已知的参数是否靠谱,此时的统计推断即为假设检验。
2、联系是:二者都属于推断统计——利用样本的数据得到样本统计量(statistic),然后做出对总体参数(parameter)的论断。
3、举例来说:推断全校学生(总体)的平均每天上网时间(参数)。
如果参数未知,要靠抽样的数据进行推断,此时进行的就是参数估计,用抽样得到的统计量——样本平均上网时间(比如说3小时)来估计全校学生平均上网时间。
如果先前有人已得出得出论断,学生平均上网时间为5小时(参数已知),而你不知该参数可不可信,这时做的就是假设检验,通过样本得到的平均3小时的上网时间告诉你,先前关于总体的信息很可能是不靠谱的,无法通过检验。
2、联系是:二者都属于推断统计——利用样本的数据得到样本统计量(statistic),然后做出对总体参数(parameter)的论断。
3、举例来说:推断全校学生(总体)的平均每天上网时间(参数)。
如果参数未知,要靠抽样的数据进行推断,此时进行的就是参数估计,用抽样得到的统计量——样本平均上网时间(比如说3小时)来估计全校学生平均上网时间。
如果先前有人已得出得出论断,学生平均上网时间为5小时(参数已知),而你不知该参数可不可信,这时做的就是假设检验,通过样本得到的平均3小时的上网时间告诉你,先前关于总体的信息很可能是不靠谱的,无法通过检验。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询