讨论分段函数的连续性和可导性
1个回答
2017-10-18
展开全部
1、连续性证明:
左极限=lim(x→0-)f(x)=lim(x→0-)x(用x=0左边的函数式,即x<0的函数式求)
=0
右极限=lim(x→0+)f(x)=lim(x→0+)x²(用x=0右边的函数式,即x>0的函数式求)
=0
左右极限相等,所以极限存在,即lim(x→0)f(x)=0
而根据题意,f(0)=0²=0=lim(x→0)f(x),在x=0点处极限值=函数值,所以在x=0点处连续。
2、可导性证明:
因为在x=0点处连续,所以可以直接用函数表达式求左右导数
左导数=(x)'(用x=0左边的函数式,即x<0的函数式求)=1
右导数=(x²)'(用x=0右边的函数式,即x>0的函数式求)=2x=2*0=0
所以在x=0点处的左导数=1,右导数=0,左右导数不相等,f(x)在x=0点处不可导。
左极限=lim(x→0-)f(x)=lim(x→0-)x(用x=0左边的函数式,即x<0的函数式求)
=0
右极限=lim(x→0+)f(x)=lim(x→0+)x²(用x=0右边的函数式,即x>0的函数式求)
=0
左右极限相等,所以极限存在,即lim(x→0)f(x)=0
而根据题意,f(0)=0²=0=lim(x→0)f(x),在x=0点处极限值=函数值,所以在x=0点处连续。
2、可导性证明:
因为在x=0点处连续,所以可以直接用函数表达式求左右导数
左导数=(x)'(用x=0左边的函数式,即x<0的函数式求)=1
右导数=(x²)'(用x=0右边的函数式,即x>0的函数式求)=2x=2*0=0
所以在x=0点处的左导数=1,右导数=0,左右导数不相等,f(x)在x=0点处不可导。
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询