求分段函数可导性时必须先求连续性吗?直接用定义求可导不行吗
黄先生
2024-12-27 广告
2024-12-27 广告
矩阵切换器就是将一路或多路视音频信号分别传输给一个或者多个显示设备,如两台电脑主机要共用一个显示器,矩阵切换器可以将两台电脑主机上的内容renyi切换到同一个或多个显示器上;迈拓维矩矩阵切换器种类齐全,性价比高,支持多种控制方式,为工程商采...
点击进入详情页
本回答由黄先生提供
2016-10-21
展开全部
可以用定义啊,但是必须是求导的定义公式
即f'(x0)=lim(x→x0)[f(x)-f(x0)]/(x-x0)
例如这个函数f(x)=x(x≥0);x-1(x<0)
这样一个分段函数,你不能认为在x=0点的左导数为(x-1)'=1
右导数为(x)'=1,左右导数都是1,所以在x=0点的导数为1
因为(x-1)'=1和(x)'=1都是在函数连续的前提下才成立的。
而这函数只是右连续,没有左连续。
所以用(x-1)'=1求左导数就是错误的。
只能用f'(0-)=lim(x→0-)[f(x)-f(0)]/(x-x0)来求左导数
左导数为f'(0-)=lim(x→0-)[f(x)-f(0)]/(x-0)
=f'(0-)=lim(x→0-)[(x-1)-0]/x(因为f(0)是根据x的计算式得到f(0)=0)
=lim(x→0-)(x-1)/x=∞
所以左导数不存在,在该点不可导。
即f'(x0)=lim(x→x0)[f(x)-f(x0)]/(x-x0)
例如这个函数f(x)=x(x≥0);x-1(x<0)
这样一个分段函数,你不能认为在x=0点的左导数为(x-1)'=1
右导数为(x)'=1,左右导数都是1,所以在x=0点的导数为1
因为(x-1)'=1和(x)'=1都是在函数连续的前提下才成立的。
而这函数只是右连续,没有左连续。
所以用(x-1)'=1求左导数就是错误的。
只能用f'(0-)=lim(x→0-)[f(x)-f(0)]/(x-x0)来求左导数
左导数为f'(0-)=lim(x→0-)[f(x)-f(0)]/(x-0)
=f'(0-)=lim(x→0-)[(x-1)-0]/x(因为f(0)是根据x的计算式得到f(0)=0)
=lim(x→0-)(x-1)/x=∞
所以左导数不存在,在该点不可导。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
当然可以直接用定义求导,但是注意不要用错导数的定义了。
先求连续性的目的在于:一旦不连续定然不可导,就不必再往下计算了;但是如果连续了,还得接着按导数的定义计算。
先求连续性的目的在于:一旦不连续定然不可导,就不必再往下计算了;但是如果连续了,还得接着按导数的定义计算。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询