2018-12-25
展开全部
x^4+1 = x^4+2x^2+1 - 2x^2
= (x^2+1)^2 - 2x^2 = (x^2+√2x+1)(x^2-√2x+1)
x^2/(x^4+1) = (√2/4)[x/(x^2-√2x+1) - x/(x^2+√2x+1)]
∫x^2dx/(x^4+1) = (√2/4)∫xdx/(x^2-√2x+1) - (√2/4)∫xdx/(x^2+√2x+1)
= (√2/8)∫(2x-√2+√2)dx/(x^2-√2x+1) - (√2/8)∫(2x+√2-√2)dx/(x^2+√2x+1)
= (√2/8)∫d(x^2-√2x+1)/(x^2-√2x+1) + (1/4)∫d(x-√2/2)/[(x-√2/2)^2+1/2]
-(√2/8)∫d(x^2+√2x+1)/(x^2+√2x+1) + (1/4)∫d(x+√2/2)/[(x+√2/2)^2+1/2]
= (√2/8)ln[(x^2-√2x+1)/(x^2+√2x+1)] + (√2/4)arctan(√2x-1)
+ (√2/4)arctan(√2x+1) + C
= (x^2+1)^2 - 2x^2 = (x^2+√2x+1)(x^2-√2x+1)
x^2/(x^4+1) = (√2/4)[x/(x^2-√2x+1) - x/(x^2+√2x+1)]
∫x^2dx/(x^4+1) = (√2/4)∫xdx/(x^2-√2x+1) - (√2/4)∫xdx/(x^2+√2x+1)
= (√2/8)∫(2x-√2+√2)dx/(x^2-√2x+1) - (√2/8)∫(2x+√2-√2)dx/(x^2+√2x+1)
= (√2/8)∫d(x^2-√2x+1)/(x^2-√2x+1) + (1/4)∫d(x-√2/2)/[(x-√2/2)^2+1/2]
-(√2/8)∫d(x^2+√2x+1)/(x^2+√2x+1) + (1/4)∫d(x+√2/2)/[(x+√2/2)^2+1/2]
= (√2/8)ln[(x^2-√2x+1)/(x^2+√2x+1)] + (√2/4)arctan(√2x-1)
+ (√2/4)arctan(√2x+1) + C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询