求微分方程y'+y=e^-x的通解
3个回答
展开全部
求微分方程y'+y=e^(-x)的通解
解:先求齐次方程y'+y=0的通解:dy/dx=-y,分离变量得dy/y=-dx;
积分之,得lny=-x+lnC₁,即y=e^(-x+lnC₁)=C₁e^(-x);
为求原方程的通解,可用参数变易法:把积分常量C₁改为x的某个函数u,得:y=ue^(-x)........(1)
将(1)的两边对x取导数得dy/dx=e^(-x)(du/dx)-ue^(-x).........(2)
将(1)和(2)代入原式得e^(-x)(du/dx)-ue^(-x)+ue^(-x)=e^(-x);
即有e^(-x)(du/dx)=e^(-x),于是得du/dx=1,故得u=x+C;代入(1)式,即得原方程的通解为:
y=(x+C)e^(-x).
【此解法比较通俗易懂,且几乎程式化,好掌握,建议你学会这一方法,用来求解此类一阶非
齐次方程。】
解:先求齐次方程y'+y=0的通解:dy/dx=-y,分离变量得dy/y=-dx;
积分之,得lny=-x+lnC₁,即y=e^(-x+lnC₁)=C₁e^(-x);
为求原方程的通解,可用参数变易法:把积分常量C₁改为x的某个函数u,得:y=ue^(-x)........(1)
将(1)的两边对x取导数得dy/dx=e^(-x)(du/dx)-ue^(-x).........(2)
将(1)和(2)代入原式得e^(-x)(du/dx)-ue^(-x)+ue^(-x)=e^(-x);
即有e^(-x)(du/dx)=e^(-x),于是得du/dx=1,故得u=x+C;代入(1)式,即得原方程的通解为:
y=(x+C)e^(-x).
【此解法比较通俗易懂,且几乎程式化,好掌握,建议你学会这一方法,用来求解此类一阶非
齐次方程。】
展开全部
y''-y=0的特征方程为a^2-1=0,解是a=1或a=-1,
因此通解是y=ce^x+de^(-x)。
y''-y=e^x的特解设为y=e^x(ax),
则y'=ae^x(x+1),y''=ae^x(x+2),
代入方程得2ae^x=e^x,于是a=0.5,
特解是y=0.5xe^x。
最后得微分方程的通解是
y=ce^x+de^(-x)+0.5xe^x。
因此通解是y=ce^x+de^(-x)。
y''-y=e^x的特解设为y=e^x(ax),
则y'=ae^x(x+1),y''=ae^x(x+2),
代入方程得2ae^x=e^x,于是a=0.5,
特解是y=0.5xe^x。
最后得微分方程的通解是
y=ce^x+de^(-x)+0.5xe^x。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询