求微分方程dy/dx+y/x=sinx/x满足初始条件y | (x=n)=1的特解

需过程... 需过程 展开
SwalOlow
2010-07-04 · TA获得超过4149个赞
知道小有建树答主
回答量:422
采纳率:0%
帮助的人:1040万
展开全部
两边同乘以x,得xdy/dx+y=sinx。
定义新变量u=xy,则du=xdy+ydx,所以du/dx=xdy/dx+y,恰为上面方程的左边。所以方程成为
du/dx=sinx,
易解得u=-cosx+C,
所以y=u/x=-cosx/x+C/x,C为任意常数。
代入初始条件y|{x=n}=1,得1=-cos(n)/n+C/n,所以C=n+cos(n),代入通解即得所求特解
y=-cosx/x+[n+cos(n)]/x
张笃一
推荐于2016-03-23 · TA获得超过646个赞
知道小有建树答主
回答量:208
采纳率:0%
帮助的人:274万
展开全部
变量代换:y=z/x
d(z/x)/dx+z/x^2=sinx/x
dz/dx=sinx
z=-cosx+C
代入可得
y=-cosx/x+C/x
代入初值
1=-cosn/n+C/n
C=n+cosn
y=-cosx/x+(n+cosn)/x
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式