用洛必达法则求极限和用泰勒公式展开求极限的结果有没可能不同?
lim[x->0](sinx-xcosx)/sinx^3,用泰勒公式展开为:(1/3x^3+o(x^3))/x^3=1/3;而用洛必达法则为:=lim[x->0](1-c...
lim[x->0](sinx-xcosx)/sinx^3,用泰勒公式展开为:(1/3x^3+o(x^3))/x^3=1/3; 而用洛必达法则为:=lim[x->0](1-cosx)/sinx^2=lim[x->0](sinx)/2sinx^cosx=lim[x->0]1/2cosx=1/2; 两者结果不同,我是哪里弄错了?
展开
展开全部
用泰勒公式:
sinx=x-x^3/3!+o(x^3)
xcosx=x[1-x^2/2!+o(x^2)]=x-x^3/2+o(x^3)
lim[x->0](sinx-xcosx)/sinx^3=lim[x->0][-x^3/6+x^3/2+o(x^3)]/x^3=-1/6+1/2=1/3
用洛必达法则:
lim[x->0](sinx-xcosx)/sinx^3=lim[x->0](sinx-xcosx)/x^3=lim[x->0](xsinx)/3x^2=1/3
结果相同。
你的“用洛必达法则为:=lim[x->0](1-cosx)/sinx^2”这里就已经错了。
sinx=x-x^3/3!+o(x^3)
xcosx=x[1-x^2/2!+o(x^2)]=x-x^3/2+o(x^3)
lim[x->0](sinx-xcosx)/sinx^3=lim[x->0][-x^3/6+x^3/2+o(x^3)]/x^3=-1/6+1/2=1/3
用洛必达法则:
lim[x->0](sinx-xcosx)/sinx^3=lim[x->0](sinx-xcosx)/x^3=lim[x->0](xsinx)/3x^2=1/3
结果相同。
你的“用洛必达法则为:=lim[x->0](1-cosx)/sinx^2”这里就已经错了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询