数列{an}满足a1=1且an+1=(1+1n2+n)an+...
数列{an}满足a1=1且an+1=(1+1n2+n)an+12n(n≥1).(1)用数学归纳法证明:an≥2(n≥2)(2)设bn=an+1-ana...
数列{an}满足a1=1且an+1=(1+1n2+n)an+12n(n≥1). (1)用数学归纳法证明:an≥2(n≥2) (2)设bn=an+1-anan,证明数列{bn}的前n项和Sn<74 (3)已知不等式ln(1+x)<x对x>0成立,证明:an<2e34(n≥1)(其中无理数e=2.71828…)
展开
1个回答
展开全部
证明:(1)①当n=2 时,a2=2,不等式成立.
②假设当n=k(k≥2)时不等式成立,即ak≥2,那么ak+1=(1+1k2+k)ak+12k>ak≥2.
即当n=k+1时不等式成立.
根据①②可知:an≥2对 n≥2成立.…(4分)
(2)∵an+1an=1+1n2+n+12nan,∴bn=an+1-anan=an+1an-1=1n2+n+12nan
当n=1时,b1=a2-a1a1=1,
当n≥2时,an≥2,bn=1n2+n+12nan≤1n2+n+12n+1,
故Sn=b1+b2+…+bn≤1+(12•3+13•4+…+1n(n+1))+(123+124+…+12n+1)
=1+[12-13+13-14+…+1n-1n+1]+14[1-(12)n-1]<1+12+14=74…(9分)
(3)当n≥2时,由(1)的结论知:an+1=(1+1n2+n)an+12n≤(1+1n2+n+12n+1)an
∵ln(1+x)<x,
∴lnan+1≤ln(1+1n2+n+12n+1)+lnan<lnan+1n2+n+12n+1,
∴lnan+1-lnan≤1n2+n+12n+1(n≥2)
求和可得lnan-lna2<12•3+13•4+…+1n(n-1)+123+124+…+12n=12-1n+122-12n<34
而a2=2,∴lnan+12<34,∴an<2e34(n≥2),而a1=1<2e34
故对任意的正整数n,有an<2e34.…(14分)
②假设当n=k(k≥2)时不等式成立,即ak≥2,那么ak+1=(1+1k2+k)ak+12k>ak≥2.
即当n=k+1时不等式成立.
根据①②可知:an≥2对 n≥2成立.…(4分)
(2)∵an+1an=1+1n2+n+12nan,∴bn=an+1-anan=an+1an-1=1n2+n+12nan
当n=1时,b1=a2-a1a1=1,
当n≥2时,an≥2,bn=1n2+n+12nan≤1n2+n+12n+1,
故Sn=b1+b2+…+bn≤1+(12•3+13•4+…+1n(n+1))+(123+124+…+12n+1)
=1+[12-13+13-14+…+1n-1n+1]+14[1-(12)n-1]<1+12+14=74…(9分)
(3)当n≥2时,由(1)的结论知:an+1=(1+1n2+n)an+12n≤(1+1n2+n+12n+1)an
∵ln(1+x)<x,
∴lnan+1≤ln(1+1n2+n+12n+1)+lnan<lnan+1n2+n+12n+1,
∴lnan+1-lnan≤1n2+n+12n+1(n≥2)
求和可得lnan-lna2<12•3+13•4+…+1n(n-1)+123+124+…+12n=12-1n+122-12n<34
而a2=2,∴lnan+12<34,∴an<2e34(n≥2),而a1=1<2e34
故对任意的正整数n,有an<2e34.…(14分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询