理论力学的题,求过程 20

 我来答
好人一生平安Z2U

2021-01-06 · TA获得超过3.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:90%
帮助的人:2308万
展开全部
人们常说,结构力学是结构工程师的看家本事,足以说明结构力学在其专业知识结构中的重要地位。多年的结构力学教学工作中,总听到有学生叹息本课程难学,于是有了与同学们共同探讨如何学好结构力学的想法。
一、课程特点
结构力学是高校土建类专业一门重要的专业基础课,它既是专业课的基础,又直接服务于工程实际。作为专业基础课,它具有和其他基础课相同的特点:理论严密、系统完整、逻辑性强。同时,结构力学又比先学的其它基础课程更接近实际,它的基础概念和基本原理的物理意义具体、明确,计算简图形象、直观,分析问题的思路清晰、明乐。
二、学生学习《结构力学》的现状分析
1、调查结果分析
据对九五级学生的调查了解,对结构力学感兴趣的人数约占75%左右,大约有75%~90%的学生学习目的明确,能够认识到学习结构力学的重要性,除了少数的学生是为了应付考试而被动的学习外,大部分同学认为结构力学解题方法灵活、多样、技巧性强,学习这门课既能训练人的思维能力,增强分析问题、解决问题的能力,又很实用。所以,学习比较自觉主动。但学生也普通反映听课容易,做题困难。这样就在某种程度上影响了学生学习的情绪,主要表现在做作业时缺乏耐心,情绪不稳,遇到解不出的题,容易急躁,甚至放弃或抄袭别人的作业,因而影响了学习效果。
2、经常出现的错误及其原因分析
从学生作业和考试中最常出现的错误,大体可分为两类:一类为概念不清,解题方法和技巧不熟练。如:机动分析时,规则用错;静定结构的内力计算时,不能画出正确的隔离图,不能建立正确的平衡方程;简化计算中不能正确取出本结构计算简图等等。二类是计算错误。这类错误主要有:四则运算错误、解方程错误、计算符号写错等等。从错误的影响范围来看,往往是一处不慎,全盘皆错。
三、解决对策
课堂上,老师不可能将教材上所有内容面面具到。如果这样,一来学时所限,不可能做得到;二来讲的过多、过细、过全,学生不用思维,不用动脑筋,实际上窒息了学生的思维,只能使学生养成了过分依靠教师的习惯,这样,老师的愿望是好的,但效果适得其反。我们培养出来的人,应是具有独立思考,善于发现、分析和解决问题能力的人,是具有创新和开拓精神的人才。这是符合时代科技迅猛发展要求的。所以,我认为,同学们应在教师启发式教学指导下,改进学习方法,明确本课程的基本要求,自觉加强自身素质,培养创新能力,真正使自己所学的知识“活”起来。
(一)把握基本内容的学习
故然结构力学要解决的问题很多,提供的方法也不少,但初学时节,很容易感到结力就是一系列求解技巧和方法的罗列,有一种无处下手的感觉。的确,结构力学中涉及很多的、适用不同情况的、有特色的求解方法,但是,我们应跳出众多具体求解方法的“乱阵”,而去努力提炼发掘其中处理问题的最基本的“招术”,即主导思路和方法。其实,结构力学计算内容中,出现最频繁的要数结构组成分析和内力图的绘制。所以,应把它作为结力学习的两个基本的问题。解决好这两个问题,是学好结力的前提条件。初学者往往认为这些内容在理力和材力中已经学过,这里没有什么东西可学,甚至把纵坐标叠加法做内力图与材力中介绍过的“叠加法”相混淆,而没有认真的体会结力中这一方法的优越性。学习不求甚解,这是学习结力的一大忌讳。然而,仅仅停留在会算的基础上也是远远不够的,还应力求熟练和准确。因为只有这样,才能提高解题速度,同时也有利于思路的延伸。这就需要平时多练多总结了。另外有意识地熟记一些基本内力图也是有一定帮助的。
(二)培养能力拓展思路提高素质
学生在学习中向教师提问是正常现象,但目前同学们中的主要倾向是,能提出理论性问题的不多,问习题如何解算的较多。若以就事论事的态度学习结力,势必会养成对教师过多的依赖,而对作业中的困难不认真思考,不积极想办法解决。这很不利于同学们能力的培养和素质的提高。解一道题,答案本身并不重要,重要的在于思路、方法。如何能把老师在例题中讲过的方法,灵活地运用到具体的结构作业中去就需要学生要把相关的理论知识理解、消化、吸收,而不是就题论题。如超静定结构的计算中,首先要明确超静定结构计算与静定结构计算的主要差别,即各单跨梁的杆端弯矩不能全部只由平衡条件求得。一旦求得了所有的杆端弯矩,则一切问题与静定结构完全相同。因此,各式多样的超静定结构计算方法归结到一点,就是直接地或间接地求算各单跨染的杆端弯矩。
(三)注意简化计算方法的运用
在掌握了每种方法的基本运算方法后,为提高解题效率和解题技巧,就要注意简化计算方法的运用。结构的对称性是我们经常利用的一点。例如,在超静定计算中,我们可以取半结构进行计算,从而大大地减少未知力数目,甚至可以转化为静定结构;也可取对称的基本体系,这样可减少典型方程中系数和自由项的个数;
力学是最古老的科学之一,它是社会生产和科学实践长期发展的产物。随着古代建筑技术的发展,简单机械的应用,静力学逐渐发展完善。公元前5—前 4世纪,在中国的《墨经》中已有关于水力学的叙述。古希腊的数学家阿基米德(公元前 3世纪)提出了杠杆平衡公式(限于平行力)及重心公式,奠定了静力学基础。荷兰学者S.斯蒂文(16世纪)解决了非平行力情况下的杠杆问题,发现了力的平行四边形法则。他还提出了著名的“黄金定则”,是虚位移原理的萌芽。这一原理的现代提法是瑞士学者约翰·伯努利于1717年提出的。
动力学的科学基础以及整个力学的奠定时期在17世纪。意大利物理学家伽利略创立了惯性定律,首次提出了加速度的概念。他应用了运动的合成原理,与静力学中力的平行四边形法则相对应,并把力学建立在科学实验的基础上。英国物理学家牛顿推广了力的概念,引入质量的概念,总结出机械运动的三定律(1687年),奠定了经典力学的基础。他发现的万有引力定律,是天体力学的基础。以牛顿和德国人G.莱布尼兹所发明的微积分为工具,瑞士数学家L.欧拉系统地研究了质点动力学问题,并奠定了刚体力学的基础。
希卓
2024-10-17 广告
分布式应变监测技术是现代结构健康监测的重要组成部分。它通过在结构内部或表面布置多个应变传感器,实现对结构变形和应变的连续、实时监测。这种技术能够准确捕捉结构在各种载荷和环境条件下的应变响应,为结构的安全评估、损伤预警和寿命预测提供重要数据支... 点击进入详情页
本回答由希卓提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式