3个回答
展开全部
x->2
分子
√(x-1) =√[1+(x-2)] = 1+ (1/2)(x-2) +o(x-2)
√(x-1) -1 =(1/2)(x-2) +o(x-2)
ln(3-x) =ln(1-(x-2)) =-(x-2)+o(x-2)
√(x-1) .ln(3-x) =-(1/2)(x-2)^2 +o)(x-2)^2)
分母
2^x = 4.2^(x-2) = 4[ 1+ ln2.(x-2) +o(x-2) ]
2^x -4 = 4ln2.(x-2) +o(x-2)
sin(πx) = sin(π[(x-2)+2]) = sin[2π +π(x-2)] =sin[π(x-2)] =π(x-2) +o(x-2)
(2^x -4). sin(πx) = 4πln2.(x-2)^2 +o[(x-2)^2]
//
lim(x->2) [√(x-1) -1].ln(3-x) / [(2^x -4). sin(πx)]
=lim(x->2) -(1/2)(x-2)^2 / [ 4πln2.(x-2)^2 ]
=-1/(8πln2)
分子
√(x-1) =√[1+(x-2)] = 1+ (1/2)(x-2) +o(x-2)
√(x-1) -1 =(1/2)(x-2) +o(x-2)
ln(3-x) =ln(1-(x-2)) =-(x-2)+o(x-2)
√(x-1) .ln(3-x) =-(1/2)(x-2)^2 +o)(x-2)^2)
分母
2^x = 4.2^(x-2) = 4[ 1+ ln2.(x-2) +o(x-2) ]
2^x -4 = 4ln2.(x-2) +o(x-2)
sin(πx) = sin(π[(x-2)+2]) = sin[2π +π(x-2)] =sin[π(x-2)] =π(x-2) +o(x-2)
(2^x -4). sin(πx) = 4πln2.(x-2)^2 +o[(x-2)^2]
//
lim(x->2) [√(x-1) -1].ln(3-x) / [(2^x -4). sin(πx)]
=lim(x->2) -(1/2)(x-2)^2 / [ 4πln2.(x-2)^2 ]
=-1/(8πln2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询