微分方程y”-2y’+y=e∧x特解的形式
1个回答
展开全部
特征方程为:x^2-2x+1=0,得:x=1因此通解为y1=(c1x+c2)e^x设特解y2=kx^2e^xy2'=2kxe^x+kx^2e^xy2"=2ke^x+4kxe^x+kx^2e^x代入原方程e^x(2k+4kx+kx^2-4kx-2kx^2+kx^2)=e^x有:2k=1,得:k=1/2因此y2=x^2e^x/2因此解的形...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
系科仪器
2024-08-02 广告
2024-08-02 广告
科仪器致力于为微纳薄膜领域提供精益级测量及控制仪器,包括各种光谱椭偏、激光椭偏、反射式光谱等,从性能参数、使用体验、价格、产品可靠性及工艺拓展性等多个维度综合考量,助客户提高研发和生产效率,以及带给客户更好的使用体验。...
点击进入详情页
本回答由系科仪器提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询