已知函数f(x)=x的平方+2ax+3,求函数f(x)在区间[-1,1]上有最小值的表达式a?
1个回答
展开全部
f(x)=x的平方+2ax+3
=(x+a)²+3-a²
当a≥1时,最小值为(-1+a)²+3-a²=4-2a
当-1<a<1时,最小值为3-a²
当a≤-1时,最小值为(1+a)²+3-a²=4+2a,2,
4937256 举报
f(x)=x的平方+2ax+3 =(x+a)²+3-a² 嘻嘻~~这有点看不太懂!能帮我解释下吗??
举报 醉花吟月
f(x)=x的平方+2ax+3 =(x+a)²+3-a² 其中平方部分大于等于零 对称轴x=-a 要求区间[-1,1]最小值 当a在区间内,即-1<a<1时,平方部分(x+a)²的值可取到0,即最小值为3-a² 当a不在区间内时,则x取与对称轴最近的值代入时,可得函数最小值 就有: 当a≥1时,最小值为f(-1)=(-1+a)²+3-a²=4-2a 当-1<a<1时,最小值为f(-a)=3-a² 当a≤-1时,最小值为f(1)=(1+a)²+3-a²=4+2a
4937256 举报
我不明白的是为什么从f(x)=x的平方+2ax+3 就突然变成(x+a)² 配方呀书上的公式呀(a+b)²=a²+2ab+b² f(x)=x的平方+2ax+3 =(x²+2ax+a²)+3-a² =(x+a)²+3-a²,
=(x+a)²+3-a²
当a≥1时,最小值为(-1+a)²+3-a²=4-2a
当-1<a<1时,最小值为3-a²
当a≤-1时,最小值为(1+a)²+3-a²=4+2a,2,
4937256 举报
f(x)=x的平方+2ax+3 =(x+a)²+3-a² 嘻嘻~~这有点看不太懂!能帮我解释下吗??
举报 醉花吟月
f(x)=x的平方+2ax+3 =(x+a)²+3-a² 其中平方部分大于等于零 对称轴x=-a 要求区间[-1,1]最小值 当a在区间内,即-1<a<1时,平方部分(x+a)²的值可取到0,即最小值为3-a² 当a不在区间内时,则x取与对称轴最近的值代入时,可得函数最小值 就有: 当a≥1时,最小值为f(-1)=(-1+a)²+3-a²=4-2a 当-1<a<1时,最小值为f(-a)=3-a² 当a≤-1时,最小值为f(1)=(1+a)²+3-a²=4+2a
4937256 举报
我不明白的是为什么从f(x)=x的平方+2ax+3 就突然变成(x+a)² 配方呀书上的公式呀(a+b)²=a²+2ab+b² f(x)=x的平方+2ax+3 =(x²+2ax+a²)+3-a² =(x+a)²+3-a²,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询