过原点的直线与圆x2+y2-6x+5=0相交于A、B两点,求弦AB的中点M的轨迹方程.
1个回答
展开全部
解题思路:根据圆的特殊性,设圆心为C,则有CM⊥AB,当斜率存在时,k CMk AB=-1,斜率不存在时加以验证.
设圆x2+y2-6x+5=0的圆心为C,则C的坐标是(3,0),由题意,CM⊥AB,
①当直线CM与AB的斜率都存在时,即x≠3,x≠0时,则有kCMkAB=-1,
∴[y/x−3×
y
x=−1(x≠3,x≠0),
化简得x2+y2-3x=0(x≠3,x≠0),
②当x=3时,y=0,点(3,0)适合题意,
③当x=0时,y=0,点(0,0)不适合题意,
解方程组
x2+y2−3x=0
x2+y2−6x+5=0]得x=
5
3,y=±
2
3
5,
∴点M的轨迹方程是x2+y2-3x=0(
5
3<x≤3).
点评:
本题考点: 轨迹方程.
考点点评: 本题主要考查轨迹方程的求解,应注意利用圆的特殊性,同时注意所求轨迹的纯粹性,避免增解.
设圆x2+y2-6x+5=0的圆心为C,则C的坐标是(3,0),由题意,CM⊥AB,
①当直线CM与AB的斜率都存在时,即x≠3,x≠0时,则有kCMkAB=-1,
∴[y/x−3×
y
x=−1(x≠3,x≠0),
化简得x2+y2-3x=0(x≠3,x≠0),
②当x=3时,y=0,点(3,0)适合题意,
③当x=0时,y=0,点(0,0)不适合题意,
解方程组
x2+y2−3x=0
x2+y2−6x+5=0]得x=
5
3,y=±
2
3
5,
∴点M的轨迹方程是x2+y2-3x=0(
5
3<x≤3).
点评:
本题考点: 轨迹方程.
考点点评: 本题主要考查轨迹方程的求解,应注意利用圆的特殊性,同时注意所求轨迹的纯粹性,避免增解.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询