抛物线的顶点方程怎么求啊?
1个回答
展开全部
原点顶点:
y =轴2 (打开,a> 0)
y = -ax 2 (打开,a> 0)
x = ay 2 (向右打开,a> 0)
x = -ay 2 (向左打开,a> 0)
在(h,k)处的顶点:
y = a(x-h)2 + k(打开,a> 0)
y = -a(x-h)2 + k(打开,a> 0)
x = a(y-k)2 + h(向右打开,a> 0)
y = -a(y-k)2 + h(向左打开,a> 0)
扩展资料:
平面内与一个定点F和一条直线l的距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的准线,定点F不在定直线上。
它与椭圆、双曲线的第二定义相仿,仅比值(离心率e)不同,当e=1时为抛物线,当0<e<1时为椭圆,当e>1时为双曲线。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询