常数项级数的概念和性质

 我来答
ok噜啦啦253
2023-03-18 · TA获得超过779个赞
知道大有可为答主
回答量:1.5万
采纳率:100%
帮助的人:224万
展开全部

常数项级数的概念和性质如下:

常数项级数,指矢量场的散度在体积τ上的体积分等于矢量场在限定该体积的闭合曲面s上的面积分附。性质:在级数中去掉、加上或改变有限项,不会改变级数的收敛性。

拓展:

常数项级数是数项基数,另外,还有函数项级数,数项级数和函数项级数统称级数。又因为级数也可以由有限项组成,故由无限项所组成的级数才能成为无穷级数。

无穷级数理论是关于无穷多项相加的理论,就其本质而言,无穷级数是一种特殊形式的极限。无穷级数是高等数学的一个重要组成部分,它通常是表示函数、研究函数性质和进行数值计算的有力工具,在实际问题中,有着广泛的应用。

判断常数项级数收敛的方法有正项级数及其收敛性判别法、交错级数及其收敛性判别法、绝对收敛与条件收敛。

收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。多项式里,不含字母的项叫常数项。是指一个数值不变的常量,与之相反的是变量。跟大多数物理常数不一样的地方是,数学常数的定义是独立于所有物理测量的。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式