如何证明矩阵是非奇异的?

 我来答
社会民生小助手小伸
高粉答主

2023-05-22 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:951
采纳率:100%
帮助的人:15.6万
展开全部

首先应该是齐次的线性方程组。

方程个数小于未知数个数即系数矩阵的秩小于未知数的个数。

我觉得这样可能好理解一点的是系数矩阵的秩就是有效方程的个数。

未知数的个数多余有效方程的个数自然有非零解。

类似于X+Y=3 一个方程两个未知数X Y自然有非零解。

重要定理

每一个线性空间都有一个基。

对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。

矩阵非奇异(可逆)当且仅当它的行列式不为零。

矩阵非奇异当且仅当它代表的线性变换是个自同构。

矩阵半正定当且仅当它的每个特征值大于或等于零。

矩阵正定当且仅当它的每个特征值都大于零。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式