在三角形ABC中,内角ABC的对边分别为abc,且c/(a+b) + b/(a+c)=1,
1.求A2.设f(x)=sin(A-2x)+2sinxcosx,x属于[0,兀],若f(x)大于等于1/2,求x的取值范围要详细过程,谢谢...
1.求A
2.设f(x)=sin(A-2x)+2sinxcosx,x属于[0,兀],若f(x)大于等于1/2,求x的取值范围
要详细过程,谢谢 展开
2.设f(x)=sin(A-2x)+2sinxcosx,x属于[0,兀],若f(x)大于等于1/2,求x的取值范围
要详细过程,谢谢 展开
展开全部
答:
1)
三角形ABC满足:c/(a+b)+b/(a+c)=1
变形得:
ac+c^2+ab+b^2=a^2+ac+ab+bc
a^2=b^2+c^2-bc
=b^2+c^2-2bccosA
所以:
cosA=1/2
A=60°
2)
f(x)=sin(A-2x)+2sinxcosx
=sin(π/3-2x)+sin2x
=2sin(π/6)cos(2x-π/6)
=cos(2x-π/6)>=1/2
0<=x<=π,0<=2x<=2π
-π/6<=2x-π/6<=11π/6
所以:
-π/6<=2x-π/6<=π/3或者5π/3<=2x-π/6<=11π/6
解得:0<=x<=π/4或者11π/12<=x<=π
1)
三角形ABC满足:c/(a+b)+b/(a+c)=1
变形得:
ac+c^2+ab+b^2=a^2+ac+ab+bc
a^2=b^2+c^2-bc
=b^2+c^2-2bccosA
所以:
cosA=1/2
A=60°
2)
f(x)=sin(A-2x)+2sinxcosx
=sin(π/3-2x)+sin2x
=2sin(π/6)cos(2x-π/6)
=cos(2x-π/6)>=1/2
0<=x<=π,0<=2x<=2π
-π/6<=2x-π/6<=11π/6
所以:
-π/6<=2x-π/6<=π/3或者5π/3<=2x-π/6<=11π/6
解得:0<=x<=π/4或者11π/12<=x<=π
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |