已知tana+sina=a,tana-sina=b,求证(a^2-b^2)^2=16ab
2014-02-27
展开全部
(a^2-b^2)^2=[(a+b)(a-b)]^2=16tan^2(A)sin^2(A)
16ab=16[tan^2(A)-sin^2(A)]
要证(a2-b2)2=16ab成立
需证tan^2(A)sin^2(A)=tan^2(A)-sin^2(A)
即证tan^2(A)sin^2(A)-tan^2(A)=-sin^2(A)
即证-tan^2(A)[1-sin^2(A)]=-sin^2(A)
即证-sin^2(A)=-sin^2(A)
显然-sin^2(A)=-sin^2(A)成立
∴(a2-b2)2=16ab成立.
16ab=16[tan^2(A)-sin^2(A)]
要证(a2-b2)2=16ab成立
需证tan^2(A)sin^2(A)=tan^2(A)-sin^2(A)
即证tan^2(A)sin^2(A)-tan^2(A)=-sin^2(A)
即证-tan^2(A)[1-sin^2(A)]=-sin^2(A)
即证-sin^2(A)=-sin^2(A)
显然-sin^2(A)=-sin^2(A)成立
∴(a2-b2)2=16ab成立.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询