二阶常系数齐次线性微分方程特解是怎么得到的 150
我想请教一下,x1,x2是这个二阶齐次线性方程的特解,它们是怎么得到的,看了下很多其他资料,都没发现,请教一下哪位大师可以回答一下啊...
我想请教一下,x1,x2是这个二阶齐次线性方程的特解,它们是怎么得到的,看了下很多其他资料,都没发现,请教一下哪位大师可以回答一下啊
展开
展开全部
标准形式 y″+py′+qy=0
特征方程 r^2+pr+q=0
通解
1.两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)
2.两根相等的实根:y=(C1+C2x)e^(r1x)
3.共轭复根r=α+iβ:y=e^(αx)*(C1cosβx+C2sinβx)
标准形式 y''+p(x)y'+q(x)y=f(x)
解法:
通解=非齐次方程特解+齐次方程通解
对二阶常系数线性非齐次微分方程形式
ay''+by'+cy=p(x) 的特解y*具有形式
其中Q(x)是与p(x)同次的多项式,k按α不是特征根、是单特征根或二重特征根(上文有提),依次取0,1或2. 将y*代入方程,比较方程两边x的同次幂的系数(待定系数法),就可确定出Q(x)的系数而得特解y*。
特征方程 r^2+pr+q=0
通解
1.两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)
2.两根相等的实根:y=(C1+C2x)e^(r1x)
3.共轭复根r=α+iβ:y=e^(αx)*(C1cosβx+C2sinβx)
标准形式 y''+p(x)y'+q(x)y=f(x)
解法:
通解=非齐次方程特解+齐次方程通解
对二阶常系数线性非齐次微分方程形式
ay''+by'+cy=p(x) 的特解y*具有形式
其中Q(x)是与p(x)同次的多项式,k按α不是特征根、是单特征根或二重特征根(上文有提),依次取0,1或2. 将y*代入方程,比较方程两边x的同次幂的系数(待定系数法),就可确定出Q(x)的系数而得特解y*。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |