已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是( ) A.(1,+∞) B.[1,
已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)...
已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是( ) A.(1,+∞) B.[1,+∞) C.(2,+∞) D.[2,+∞)
展开
1个回答
展开全部
(方法一)因为f(a)=f(b),所以|lga|=|lgb|, 不妨设0<a<b,则0<a<1<b,∴lga=-lgb,lga+lgb=0 ∴lg(ab)=0 ∴ab=1, 又a>0,b>0,且a≠b ∴(a+b) 2 >4ab=4 ∴a+b>2 故选C. (方法二)由对数的定义域,设0<a<b,且f(a)=f(b),得:
整理得线性规划表达式为:
因此问题转化为求z=x+y的取值范围问题,则z=x+y?y=-x+z,即求函数的截距最值. 根据导数定义, y=
∴a+b的取值范围是(2,+∞). 故选C. |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询