(2009?崇左)如图,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AD=2,BC=4,延长BC到E,使CE=AD.(1)证明
(2009?崇左)如图,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AD=2,BC=4,延长BC到E,使CE=AD.(1)证明:△BAD≌△DCE;(2)如果AC⊥...
(2009?崇左)如图,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AD=2,BC=4,延长BC到E,使CE=AD.(1)证明:△BAD≌△DCE;(2)如果AC⊥BD,求等腰梯形ABCD的高DF的值.
展开
1个回答
展开全部
(1)证明:∵AD∥BC,
∴∠CDA=∠DCE.(1分)
又∵四边形ABCD是等腰梯形,
∴∠BAD=∠CDA,(2分)
∴∠BAD=∠DCE.(3分)
∵AB=DC,AD=CE,
∴△BAD≌△DCE;(5分)
(2)解:∵AD=CE,AD∥BC,
∴四边形ACED是平行四边形,(7分)
∴AC∥DE.(8分)
∵AC⊥BD,
∴DE⊥BD.(9分)
由(1)可知,△BAD≌△DCE,
∴DE=BD.(10分)
所以,△BDE是等腰直角三角形,即∠E=45°,
∴DF=FE=FC+CE.(12分)
∵四边形ABCD是等腰梯形,而AD=2,BC=4,
∴FC=
(BC-AD)=
(4-2)=1.(13分)
∵CE=AD=2,
∴DF=3.(14分)
∴∠CDA=∠DCE.(1分)
又∵四边形ABCD是等腰梯形,
∴∠BAD=∠CDA,(2分)
∴∠BAD=∠DCE.(3分)
∵AB=DC,AD=CE,
∴△BAD≌△DCE;(5分)
(2)解:∵AD=CE,AD∥BC,
∴四边形ACED是平行四边形,(7分)
∴AC∥DE.(8分)
∵AC⊥BD,
∴DE⊥BD.(9分)
由(1)可知,△BAD≌△DCE,
∴DE=BD.(10分)
所以,△BDE是等腰直角三角形,即∠E=45°,
∴DF=FE=FC+CE.(12分)
∵四边形ABCD是等腰梯形,而AD=2,BC=4,
∴FC=
1 |
2 |
1 |
2 |
∵CE=AD=2,
∴DF=3.(14分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询