如图,△ABC是直角三角形,∠CAB=90°,D是斜边BC上的中点,E、F分别是AB、AC边上的点,且DE⊥DF(1)若A

如图,△ABC是直角三角形,∠CAB=90°,D是斜边BC上的中点,E、F分别是AB、AC边上的点,且DE⊥DF(1)若AB=AC,BE=12,CF=5,求△DEF的面积... 如图,△ABC是直角三角形,∠CAB=90°,D是斜边BC上的中点,E、F分别是AB、AC边上的点,且DE⊥DF(1)若AB=AC,BE=12,CF=5,求△DEF的面积.(2)求证:BE2+CF2=EF2. 展开
 我来答
手机用户15679
推荐于2018-04-26 · TA获得超过112个赞
知道答主
回答量:138
采纳率:100%
帮助的人:155万
展开全部
解答:(1)解:连接AD,
∵在Rt△ABC中,AB=AC,AD为BC边的中线,
∴∠DAC=∠BAD=∠C=45°,AD⊥BC,AD=DC,
又∵DE⊥DF,AD⊥DC,
∴∠EDA+∠ADF=∠CDF+∠FDA=90°,
∴∠EDA=∠CDF,
在△AED与△CFD中,
∠EDA=∠CDF
AD=CD
∠EAD=∠C

∴△AED≌△CFD(ASA).
∴AE=CF,
同理△AED≌△CFD,
∴AF=BE.
∵∠EAF=90°,
∴EF2=DE2+DF2
∴BE2+CF2=EF2
∵BE=12,CF=5,
∵EF=13,
∵△BDE≌△ADF,
∴DE=DF,∠BDE=∠ADF,
∵AD⊥BD,
∴∠ADB=90°.
∴∠EDF=∠ADE+∠ADF=∠BDE+∠ADE=∠ADB=90°,
∴在Rt△EDF中,由勾股定理得:ED2+DF2=132
DE=DF=
13
2
2

∴△DEF的面积S=
1
2
×DE×DF=
1
2
×
13
2
2
×
13
2
2
=
169
4


(2)证明:连接AD,
∵在Rt△ABC中,AB=AC,AD为BC边的中线,
∴∠DAC=∠BAD=∠C=45°,AD⊥BC,AD=DC,
又∵DE⊥DF,AD⊥DC,
∴∠EDA+∠ADF=∠CDF+∠FDA=90°,
∴∠EDA=∠CDF,
在△AED与△CFD中,
∠EDA=∠CDF
AD=CD
∠EAD=∠C

∴△AED≌△CFD(ASA),
∴AE=CF,
同理△AED≌△CFD,
∴AF=BE.
∵∠EAF=90°,
∴EF2=DE2+DF2
∴BE2+CF2=EF2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式