对任意实数a(a≠0)和b,不等式|a+b|+|a-b|≥|a|(|x-1|+|x-2|)恒成立,则实数x的取值范围是{x|12≤x≤

对任意实数a(a≠0)和b,不等式|a+b|+|a-b|≥|a|(|x-1|+|x-2|)恒成立,则实数x的取值范围是{x|12≤x≤52}{x|12≤x≤52}.... 对任意实数a(a≠0)和b,不等式|a+b|+|a-b|≥|a|(|x-1|+|x-2|)恒成立,则实数x的取值范围是{x|12≤x≤52}{x|12≤x≤52}. 展开
 我来答
AK_嗦T
2015-01-19 · TA获得超过105个赞
知道答主
回答量:133
采纳率:0%
帮助的人:139万
展开全部
由绝对值不等式的性质可得|a+b|+|a-b|≥|a+b+(a-b)|=2|a|,
再由不等式|a+b|+|a-b|≥|a|(|x-1|+|x-2|)恒成立,可得2|a|≥|a|(|x-1|+|x-2|),
故有2|a|≥|a|(|x-1|+|x-2|),即 2≥|x-1|+|x-2|.
而由绝对值的意义可得|x-1|+|x-2|表示数轴上的x对应点到1和2对应点的距离之和,而
1
2
5
2
对应点到1和2对应点的距离之和正好等于2,
故2≥|x-1|+|x-2|的解集为 x|
1
2
≤x≤
5
2

故答案为 x|
1
2
≤x≤
5
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式