(2005?广元)如图,扇形ODE的圆心角为120°,正三角形ABC的中心恰好为扇形ODE的圆心,且点B在扇形ODE内

(2005?广元)如图,扇形ODE的圆心角为120°,正三角形ABC的中心恰好为扇形ODE的圆心,且点B在扇形ODE内(1)请连接OA、OB,并证明△AOF≌△BOG;(... (2005?广元)如图,扇形ODE的圆心角为120°,正三角形ABC的中心恰好为扇形ODE的圆心,且点B在扇形ODE内(1)请连接OA、OB,并证明△AOF≌△BOG;(2)求证:△ABC与扇形ODE重叠部分的面积等于△ABC面积的13. 展开
 我来答
黄瓜期煌32
推荐于2016-12-01 · 超过63用户采纳过TA的回答
知道答主
回答量:124
采纳率:50%
帮助的人:58.9万
展开全部
证明:(1)如图,连接OA、OB,设OD交AB于F,OE交BC于G,
∵O是正三角形的中心,
∴OA=OB,∠OAF=∠OBG,∠AOB=120°,
∴∠AOF=120°-∠BOF,
∠BOG=120°-∠BOF,
∴∠AOF=∠BOG,
在△AOF和△BOG中
∠OAF=∠OBG
OA=OB
∠AOF=∠BOG

∴△AOF≌△BOG(ASA),

(2)当扇形的圆心角为120°时,△ABC与扇形重叠部分的面积,总等于△ABC的面积的
1
3

证明如下:
①当扇形的圆心角与正三角形的中心角重合时:
显然,△ABC与扇形重叠部分的面积等于△ABC的面积的
1
3

②当扇形的圆心角与正三角形的中心角不重合时:
根据(1)中△AOF≌△BOG(ASA),
即S四边形OFBG=S△AOB=
1
3
S△ABC
即△ABC与扇形重叠部分的面积,总等于△ABC的面积的
1
3

同理可证,当扇形ODE旋转至其他位置时,结论仍成立.
由①、②可知,当扇形的圆心角为120°时,△ABC与扇形重叠部分的面积,总等于△ABC的面积的
1
3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式