(2005?广元)如图,扇形ODE的圆心角为120°,正三角形ABC的中心恰好为扇形ODE的圆心,且点B在扇形ODE内
(2005?广元)如图,扇形ODE的圆心角为120°,正三角形ABC的中心恰好为扇形ODE的圆心,且点B在扇形ODE内(1)请连接OA、OB,并证明△AOF≌△BOG;(...
(2005?广元)如图,扇形ODE的圆心角为120°,正三角形ABC的中心恰好为扇形ODE的圆心,且点B在扇形ODE内(1)请连接OA、OB,并证明△AOF≌△BOG;(2)求证:△ABC与扇形ODE重叠部分的面积等于△ABC面积的13.
展开
1个回答
展开全部
证明:(1)如图,连接OA、OB,设OD交AB于F,OE交BC于G,
∵O是正三角形的中心,
∴OA=OB,∠OAF=∠OBG,∠AOB=120°,
∴∠AOF=120°-∠BOF,
∠BOG=120°-∠BOF,
∴∠AOF=∠BOG,
在△AOF和△BOG中
,
∴△AOF≌△BOG(ASA),
(2)当扇形的圆心角为120°时,△ABC与扇形重叠部分的面积,总等于△ABC的面积的
.
证明如下:
①当扇形的圆心角与正三角形的中心角重合时:
显然,△ABC与扇形重叠部分的面积等于△ABC的面积的
;
②当扇形的圆心角与正三角形的中心角不重合时:
根据(1)中△AOF≌△BOG(ASA),
即S四边形OFBG=S△AOB=
S△ABC,
即△ABC与扇形重叠部分的面积,总等于△ABC的面积的
,
同理可证,当扇形ODE旋转至其他位置时,结论仍成立.
由①、②可知,当扇形的圆心角为120°时,△ABC与扇形重叠部分的面积,总等于△ABC的面积的
.
∵O是正三角形的中心,
∴OA=OB,∠OAF=∠OBG,∠AOB=120°,
∴∠AOF=120°-∠BOF,
∠BOG=120°-∠BOF,
∴∠AOF=∠BOG,
在△AOF和△BOG中
|
∴△AOF≌△BOG(ASA),
(2)当扇形的圆心角为120°时,△ABC与扇形重叠部分的面积,总等于△ABC的面积的
1 |
3 |
证明如下:
①当扇形的圆心角与正三角形的中心角重合时:
显然,△ABC与扇形重叠部分的面积等于△ABC的面积的
1 |
3 |
②当扇形的圆心角与正三角形的中心角不重合时:
根据(1)中△AOF≌△BOG(ASA),
即S四边形OFBG=S△AOB=
1 |
3 |
即△ABC与扇形重叠部分的面积,总等于△ABC的面积的
1 |
3 |
同理可证,当扇形ODE旋转至其他位置时,结论仍成立.
由①、②可知,当扇形的圆心角为120°时,△ABC与扇形重叠部分的面积,总等于△ABC的面积的
1 |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询