如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,∠EAB=90°,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD
如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,∠EAB=90°,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD.(1)求直线FD与平面ABC...
如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,∠EAB=90°,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD.(1)求直线FD与平面ABCD所成的角的正切值;(2)求点D到平面BCF的距离;(3)求二面角B-FC-D的大小.
展开
1个回答
展开全部
(1)∵平面ABFE⊥平面ABCD,∠EAB=90°,
即EA⊥AB,而平面ABFE∩平面ABCD=AB,
∴EA⊥平面ABCD.作FH∥EA交AB于H,则FH⊥平面ABCD.
连接DH,则∠FDH为直线FD与平面ABCD所成的角.
在Rt△FHD中,∵FH=EA=1,DH=
,
∴tanFDH=
=
=
(2)∵平面ABFE⊥平面ABCD,EA⊥AB,
∴EA⊥平面ABCD.
分别以AD,AB,AE所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,
则A(0,0,0)、D(1,0,0)、C(1,2,0)、E(0,0,1)、B(0,2,0)、
F(0,1,1),
∴
=(0,1,1),
=(1,0,0),
=(0,?1,1).
∵
?
=0,
?
=0,∴
⊥平面BCF,
即
=(0,1,1)为平面BCF的一个法向量,
又
=(0,2,0),
∴点D到平面BCF的距离为d=
=
=
.
(3)∵
=(0,2,0),
=(?1,0,1),设
=(x,y,z)为平面CDEF的一个法向量,则
即EA⊥AB,而平面ABFE∩平面ABCD=AB,
∴EA⊥平面ABCD.作FH∥EA交AB于H,则FH⊥平面ABCD.
连接DH,则∠FDH为直线FD与平面ABCD所成的角.
在Rt△FHD中,∵FH=EA=1,DH=
2 |
∴tanFDH=
FH |
DH |
1 | ||
|
| ||
2 |
(2)∵平面ABFE⊥平面ABCD,EA⊥AB,
∴EA⊥平面ABCD.
分别以AD,AB,AE所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,
则A(0,0,0)、D(1,0,0)、C(1,2,0)、E(0,0,1)、B(0,2,0)、
F(0,1,1),
∴
AF |
BC |
BF |
∵
AF |
BC |
AF |
BF |
AF |
即
AF |
又
DC |
∴点D到平面BCF的距离为d=
|
| ||||
|
|
0×0+1×2+1×0 | ||
|
2 |
(3)∵
DC |
DE |
n1 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|