
初中几何题 高分悬赏
已知:OB=OC,AD=AE求证:AB=AC结论正确已经毋庸置疑了,只是还有更简单的方法吗?正面证明的方法。如果你觉得不对,请举出反例。反例肯定是有难度的。...
已知:OB=OC,AD=AE
求证:AB=AC
结论正确已经毋庸置疑了,只是还有更简单的方法吗?正面证明的方法。 如果你觉得不对,请举出反例。反例肯定是有难度的。 展开
求证:AB=AC
结论正确已经毋庸置疑了,只是还有更简单的方法吗?正面证明的方法。 如果你觉得不对,请举出反例。反例肯定是有难度的。 展开
22个回答
展开全部
当OD=OE时,易证明DB=EC,又∵AD=AE ∴AB=AC
当OD≠DE时,不妨设OD>OE
在OD上截取OF=OE,延长BF交AC于G。
由SAS证明△FOB≌△EOC
∴FB=EC ∠FBO=∠ECO ∴∠FBC=∠ECB
∴GB=GC GB-FB=GC-EC 即GF=GE ∴∠GFE=∠GEF
连结FE,则∠GFE=∠GEF
∠GFE=180°-∠BFE ∠ADE=180°-BDE
∵F在△BDE内部,∴易证明∠BFE>∠BDE
∴∠GFE<∠ADE
而∠FEG>∠DEA
由题中条件AD=AE得出∠ADE=∠DEA
∴∠GFE<∠GEF
这与∠GFE=∠GEF矛盾,所以这种情况不存在。
综上所述,AB=AC。
PS:有些细节没仔细证了,还有图有点不清楚,请见谅,希望能给你带来帮助。
展开全部
这个题绝对做不出来
看上面有高人做的真好笑,我先来指出它们的错误
1.大小事我都做主 的过程
第一步如果说AO⊥BC于E,我想这位兄弟应该是看错了E点已经有一个了,是想说AO⊥BC于H吧,那么就会有OH⊥BC于H
而OB=OC,三线合一易知H是BC中点, 那么直接用△ABH≌△ACH(SAS)就证出AB=AC了 何必那么麻烦
归纳错点 做OH⊥BC交BC于H后,直接肯定了A,O,H三点共线 或者说,连接AO延长后交BC并不一定是H点
2.jtthhh 的 过程(太有才了)
第一步直接承认了△ABC是等腰△。。 然后推出了∠ABC=∠ACB
.................
我不懂了,有了∠ABC=∠ACB 不就是AB=AC了吗
难道你没学过等角对等边??
呵呵 希望2位兄弟再好好看看,不要犯自己创条件的错误,如果我哪里说错了,欢迎指正~
另外告诉楼主 此题不完整,应该是少条件,恳请楼主再仔细看看原题
至于此题的反例易作,如下
先做个等腰△ADE
使AO不⊥于DE取O点,以O为圆心任意半径画圆交AD,AE的延长线于BC
(若有2交点则取下面的一个) 则成反例
希望对楼主有帮助咯~ 看在辛苦的份上望采纳~~
看上面有高人做的真好笑,我先来指出它们的错误
1.大小事我都做主 的过程
第一步如果说AO⊥BC于E,我想这位兄弟应该是看错了E点已经有一个了,是想说AO⊥BC于H吧,那么就会有OH⊥BC于H
而OB=OC,三线合一易知H是BC中点, 那么直接用△ABH≌△ACH(SAS)就证出AB=AC了 何必那么麻烦
归纳错点 做OH⊥BC交BC于H后,直接肯定了A,O,H三点共线 或者说,连接AO延长后交BC并不一定是H点
2.jtthhh 的 过程(太有才了)
第一步直接承认了△ABC是等腰△。。 然后推出了∠ABC=∠ACB
.................
我不懂了,有了∠ABC=∠ACB 不就是AB=AC了吗
难道你没学过等角对等边??
呵呵 希望2位兄弟再好好看看,不要犯自己创条件的错误,如果我哪里说错了,欢迎指正~
另外告诉楼主 此题不完整,应该是少条件,恳请楼主再仔细看看原题
至于此题的反例易作,如下
先做个等腰△ADE
使AO不⊥于DE取O点,以O为圆心任意半径画圆交AD,AE的延长线于BC
(若有2交点则取下面的一个) 则成反例
希望对楼主有帮助咯~ 看在辛苦的份上望采纳~~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
很简单,首先,连接DE,AO相交于H点。
因为AD=AE,所以AO垂直DE于H点(到一边上两点距离相等的点在这条边的中垂线上,中垂线定理)
因此,HD=HE,HO=HO,又有垂直,所以三角形HOD全等三角形HOE
所以OD=OE,因此BE=CD
又因为,OB=OC,所以角OBC=角OCB
三角形BCD全等三角形CBE(边角边)
所以BD=CE,因此AB=AC
因为AD=AE,所以AO垂直DE于H点(到一边上两点距离相等的点在这条边的中垂线上,中垂线定理)
因此,HD=HE,HO=HO,又有垂直,所以三角形HOD全等三角形HOE
所以OD=OE,因此BE=CD
又因为,OB=OC,所以角OBC=角OCB
三角形BCD全等三角形CBE(边角边)
所以BD=CE,因此AB=AC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连接DE
∵AD=AE
∴角ADE=AED
∴角EDB=DEC
又∵OB=OC
AD=AE
∴角ODE=OED
∵DE=ED
∴三角形BDE全等与三角形CED
∴DB=EC
AD+DB=AE+EC
AB=AC
这么简单的几何题,就一百分呐,嘿嘿,我希望会属于我啊
∵AD=AE
∴角ADE=AED
∴角EDB=DEC
又∵OB=OC
AD=AE
∴角ODE=OED
∵DE=ED
∴三角形BDE全等与三角形CED
∴DB=EC
AD+DB=AE+EC
AB=AC
这么简单的几何题,就一百分呐,嘿嘿,我希望会属于我啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连接AO垂直于BC于点E(会垂直是因为等腰)
因为OB=OC
所以三角形OBC为等腰三角形
所以三角形OBE全等于三角形OCE
所以角BOE等于角COE 所以角BOA等于角COA
又OB=OC OA=OA
所以三角形BOA全等于三角形COA
所以AB=AC
OVER
因为OB=OC
所以三角形OBC为等腰三角形
所以三角形OBE全等于三角形OCE
所以角BOE等于角COE 所以角BOA等于角COA
又OB=OC OA=OA
所以三角形BOA全等于三角形COA
所以AB=AC
OVER
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询