(矩阵的转置乘矩阵)的秩=矩阵的秩。那么矩阵乘(矩阵的转置)的秩是什么?求证明

 我来答
教育小百科达人
2019-06-01 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:566万
展开全部

矩阵乘矩阵的转置的秩=矩阵的秩。证明如下:

设 A是 m×n 的矩阵     

可以通过证明 Ax=0 和A'Ax=0 两个n元齐次方程同解证得 r(A'A)=r(A)    

1、Ax=0 是 A'Ax=0 的解。  

2、A'Ax=0 → x'A'Ax=0 → (Ax)' Ax=0 →Ax=0,故两个方程是同解的。    

同理可得 r(AA')=r(A')  

另外,有 r(A)=r(A')    

所以综上 r(A)=r(A')=r(AA')=r(A'A)

线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

扩展资料:

矩阵的乘积的秩Rab<=min{Ra,Rb。

当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。

当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。

将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积 ,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。

参考资料来源:百度百科--转置矩阵

参考资料来源:百度百科--矩阵的秩

图为信息科技(深圳)有限公司
2021-01-25 广告
当r(A)=n时,|A|≠0,所以|A*|≠0,所以r(A*)=n;当r(A)=n-1时,|A|=0,但是矩阵A中至少存在一个n-1阶子 式不为0【秩的定义】,所以r(A*)大于等于1【 A*的定义 】 ; ; ;设A是n阶矩阵,若r(... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
零上尘C
高粉答主

推荐于2019-09-21 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:1093
采纳率:100%
帮助的人:43万
展开全部

矩阵乘矩阵的转置的秩=矩阵的秩。证明如下:

设 A是 m×n 的矩阵     

可以通过证明 Ax=0 和A'Ax=0 两个n元齐次方程同解证得 r(A'A)=r(A)
    

1、Ax=0 是 A'Ax=0 的解。
  

2、A'Ax=0 → x'A'Ax=0 → (Ax)' Ax=0 →Ax=0,故两个方程是同解的。
    

同理可得 r(AA')=r(A')
  

另外 有 r(A)=r(A')
    

所以综上 r(A)=r(A')=r(AA')=r(A'A)

扩展资料:

矩阵的基本运算

矩阵的基本运算为:加、减、乘法及数乘。

加、减法及数乘比较简单,加法就是相同位置的数字加一下,减法也类似。矩阵乘以一个常数,就是所有位置都乘以这个数。

但是乘法就比较复杂了,计算规则是:

矩阵第m行与第n列交叉位置的那个值,等于第一个矩阵第m行与第二个矩阵第n列,对应位置的每个值的乘积之和。

参考资料来源:百度百科-转置矩阵

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hxzhu66
高粉答主

2017-09-10 · 醉心答题,欢迎关注
知道大有可为答主
回答量:2.6万
采纳率:97%
帮助的人:1.4亿
展开全部

这两个矩阵的秩都等于原矩阵的秩,证明见下图,要用到齐次线性方程组解的知识。

更多追问追答
追问

可以解答下划线处怎么来的吗(눈_눈)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
qvawtgh
2022-09-25
知道答主
回答量:9
采纳率:0%
帮助的人:3977
展开全部
有没有一种可能,矩阵=矩阵的转置的转置
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式