设函数f(x)=1- e^-x,证明当x>-1时有f(x)≥x/x+1?

 我来答
姑船深魅赛1m
2020-01-22
知道答主
回答量:9
采纳率:0%
帮助的人:5482
展开全部
(1)当x>-1时,f(x)≥xx+1当且仅当ex≥1+x
令g(x)=ex-x-1,则g'(x)=ex-1
当x≥0时g'(x)≥0,g(x)在[0,+∞)是增函数
当x≤0时g'(x)≤0,g(x)在(-∞,0]是减函数
于是g(x)在x=0处达到最小值,因而当x∈R时,g(x)≥g(0)时,即ex≥1+x
所以当x>-1时,f(x)≥xx+1
(2)由题意x≥0,此时f(x)≥0
当a<0时,若x>-1a,则xax+1<0,f(x)≤xax+1不成立;
当a≥0时,令h(x)=axf(x)+f(x)-x,则
f(x)≤xax+1当且仅当h(x)≤0
h'(x)=af(x)+axf'(x)+f'(x)-1=af(x)-axf(x)+ax-f(x)
(i)当0≤a≤12时,由(1)知x≤(x+1)f(x)
h'(x)≤af(x)-axf(x)+a(x+1)f(x)-f(x)
=(2a-1)f(x)≤0,
h(x)在[0,+∞)是减函数,h(x)≤h(0)=0,即f(x)≤xax+1
乐观的脑梗
2020-01-22 · 超过26用户采纳过TA的回答
知道答主
回答量:148
采纳率:55%
帮助的人:35.7万
展开全部

挺简单的~

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式