求定积分,这么做为什么不对?答案应该是3π^2 10
4个回答
展开全部
∫(0->2π) t(1-cost)^2 dt
=∫(0->2π) [ t-2tcost + t( cost)^2 ] dt
=∫(0->2π) [ t-2tcost + (1/2)t(1+ cos2t) ] dt
=[(3/4)t^2 ] |(0->2π) + ∫(0->2π) [ -2tcost + (1/2)t.cos2t ] dt
=3π^2 -2∫(0->2π) tcost dx + (1/2)∫(0->2π) t.cos2t dt
=3π^2 + 0 +0
=3π^2
consider
∫(0->2π) tcost dx
=∫(0->2π) t dsint
=[tsint]|(0->2π) -∫(0->2π) sint dt
=0 +[cost]|(0->2π)
=0
∫(0->2π) t.cos2t dt
=(1/2)∫(0->2π) t dsin2t
=(1/2)[ tsin2t]|(0->2π) -(2/3)∫(0->2π) sin2t dt
=0 +(1/3) [cos2t]| (0->2π)
=0
=∫(0->2π) [ t-2tcost + t( cost)^2 ] dt
=∫(0->2π) [ t-2tcost + (1/2)t(1+ cos2t) ] dt
=[(3/4)t^2 ] |(0->2π) + ∫(0->2π) [ -2tcost + (1/2)t.cos2t ] dt
=3π^2 -2∫(0->2π) tcost dx + (1/2)∫(0->2π) t.cos2t dt
=3π^2 + 0 +0
=3π^2
consider
∫(0->2π) tcost dx
=∫(0->2π) t dsint
=[tsint]|(0->2π) -∫(0->2π) sint dt
=0 +[cost]|(0->2π)
=0
∫(0->2π) t.cos2t dt
=(1/2)∫(0->2π) t dsin2t
=(1/2)[ tsin2t]|(0->2π) -(2/3)∫(0->2π) sin2t dt
=0 +(1/3) [cos2t]| (0->2π)
=0
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
3π^2 -2∫(0->2π) tcost dx + (1/2)∫(0...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2019-12-19 · 知道合伙人教育行家
关注
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询