概率论:设二维随机变量(X,Y)的概率密度为

 我来答
休闲娱乐chl
高粉答主

2019-10-12 · 每个回答都超有意思的
知道大有可为答主
回答量:5627
采纳率:100%
帮助的人:146万
展开全部

Cov(X,Y)=E(XY)-E(X)E(Y)=1/6-(5/12)²=-1/144。

因为分布函数 F(x0,y0)=P{X<x0&&Y<y0}

不管x0,y0谁大谁小,指的是 Y=y0直线以下、X=x0直线之右区域内的积分,而这个区域内虽然 x>y处密度函数为0,但还是有 x<y的点的。

例如:设二维随机变量(X,Y)的概率密度为 f(x,y)=kx(x-y),0

1)对Y从-X到X积分 对X从0到2积分 被积函数KX(X-Y) 做二重积分等于1

求得K=8

2)f(x,y)=8x(x-y)

X的边缘密度对Y从-X到X积分 Y的边缘密度函数对X从0到2积分

fx(x)=16x^3

fy(y)=64/3-16Y

3)P(0

扩展资料

随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。

例如,掷一硬币,可能出现正面或反面。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。

事件的概率是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。

百度网友8362f66
2019-06-19 · TA获得超过8.3万个赞
知道大有可为答主
回答量:8690
采纳率:83%
帮助的人:3323万
展开全部
(1),先求出X、Y的边缘分布密度函数fX(x)、fY(y)。根据定义和题设条件,fX(x)=∫(0,1)f(x,y)dy=3/2-x,fY(y)=∫(0,1)f(x,y)dx=3/2-y。显然,fX(x)*fY(y)≠f(x,y)。故,X、Y不相互独立。
(2),E(X)=∫(0,1)xfX(x)dx=5/12。同理,E(Y)=∫(0,1)yfY(y)dy=5/12。
又,E(XY)=∫(0,1)dx∫(0,1)xyf(x,y)dy=∫(0,1)dx∫(0,1)(2xy-x²y-xy²)dy=∫(0,1)(2x/3-x²/2)dx=1/6。
∴Cov(X,Y)=E(XY)-E(X)E(Y)=1/6-(5/12)²=-1/144。
供参考。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
无限括果倍CB
2019-06-18 · TA获得超过6392个赞
知道大有可为答主
回答量:5607
采纳率:83%
帮助的人:217万
展开全部
因为分布函数 F(x0,y0)=P{X<x0&&Y<y0}
不管x0,y0谁大谁小,指的是 Y=y0直线以下、X=x0直线之右区域内的积分,而这个区域内虽然 x>y处密度函数为0,但还是有 x<y的点的。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式