
展开全部
因为log(n+1)(n+2)+log(n+1)n=log(n+1)(n^2+2n)<log(n+1)(n+1)^2=2
而 logn(n+1)+log(n+1)n=logn(n+1)+1/logn(n+1)>=2
所以 log(n+1)(n+2)<logn(n+1)
而 logn(n+1)+log(n+1)n=logn(n+1)+1/logn(n+1)>=2
所以 log(n+1)(n+2)<logn(n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询