已知n是大于1的自然数,求证log n (n+1)>log n+1 (n+2)

急需... 急需 展开
M木叶
2009-05-01 · TA获得超过1.2万个赞
知道大有可为答主
回答量:1065
采纳率:50%
帮助的人:1165万
展开全部
logn(n+1)=ln(n+1)/ln(n)={ln(n)+ln[(n+1)/n]}/ln(n)=1+ln[(n+1)/n]/ln(n)
同样logn+1(n+2)=1+ln[(n+2)/(n+1)]/ln(n+1)
(n+1)/n>(n+2)/(n+1) => ln[(n+1)/n]>ln[(n+2)/(n+1)]
又ln(n)<ln(n+1)
所以1+ln[(n+1)/n]/ln(n)>1+ln[(n+2)/(n+1)]/ln(n+1)
则logn(n+1)>logn+1(n+2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式