试证:如果A是正定矩阵,那么A的主子式全大于零,这题该怎么解?

 我来答
玩车之有理8752
2022-06-28 · TA获得超过914个赞
知道小有建树答主
回答量:135
采纳率:100%
帮助的人:66万
展开全部
首先,由A是正定矩阵,则A与单位矩阵合同,故其行列式>0.
其次,设 f(x1,...,xn) = X'AX= 和号(i从1到n)和号(j从1到n) aijxixj.
构造二次型 f(x1,...,xk) = 和号(i从1到k)和号(j从1到k) aijxixj
则对任意不全为0的数 c1,...,ck
f(c1,...,ck) = 和号(i从1到k)和号(j从1到k) aijcicj = f(c1,...,ck,0,...,0) >0.
所以 f(x1,...,xk) 是正定的,其矩阵也是正定的,由前结论,其矩阵的行列式>0.
而 f(x1,...,xk) 的矩阵就是A的第k个顺序主子式.
故 A的顺序主子式全大于零.
最后,对A的任一主子式A1,可经过对换行与列,调到A的左上角,得矩阵B
B与A合同,故B也正定.A的主子式就是B的顺序主子式,故也大于0.
事实上,A是正定矩阵的充分必要条件是A的主子式全大于零.
这是书上定理吧,北大高代里就有,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式