如何证明三次根号3是不是有理数?

 我来答
世纪网络17
2022-09-11 · TA获得超过5946个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:142万
展开全部
设3次根号3时有理数
3^(1/3)=a/b,a,b为互质整数
3=a^3/b^3
a^3=3b^3
因为a是整数,所以a为3的倍数
所以设a=3k
因为a^3=3b^3
所以(3k)^3=3b^3
9k^3=b^3
b是3的倍数
a,b不互质
与假设矛盾
所以3次根号3不能写成a/b形式
即是无理数
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式