统计量的概念及代表符号
统计量是统计理论中用来对数据进行分析、检验的变量。宏观量是大量微观量的统计平均值,具有统计平均的意义,对于单个微观粒子,宏观量是没有意义的.相对于微观量的统计平均性质的宏观量也叫统计量。需要指出的是,描写宏观世界的物理量例如速度、动能等实际上也可以说是宏观量,但宏观量并不都具有统计平均的性质,因而宏观量并不都是统计量。
样本矩
设x1,x2,…,xn是一个大小为n的样本,对自然数k,分别称 为k阶样本原点矩和k阶样本中心矩,统称为样本矩。许多最常用的统计量,都可由样本矩构造。
例如,样本均值(即α1)和样本方差 是常用的两个统计量,前者反映总体中心位置的信息,后者反映总体分散情况。还有其他常用的统计量,如样本标准差,样本变异系数S/塣,样本偏度,样本峰度等都是样本矩的函数。若(x1,Y1),(x2,Y2),…,(xn,Yn)是从二维总体(x,Y)抽出的简单样本,则样本协方差·及样本相关系数 也是常用的统计量,r可用于推断x和Y的相关性。
次序统计量
把样本X1,x2,…,xn由小到大排列,得到,称之为样本x1,x2,…,xn的次序统计量。其中最小次序统计量x⑴最大次序统计量x(n)称为极值,在那些如年枯水量、年最大地震级数、材料的断裂强度等的统计问题中很有用。
还有一些由次序统计量派生出来的有用的统计量,如:样本中位数 是总体分布中心位置的一种度量,若样本大小n为奇数,,若n为偶数,,它容易计算且有良好的稳健性。样本p分位数Zp(0<p<1)及极差x(n)-x⑴也是重要的统计量。其中Zp当时即为中位数,而当时,表示不超过1+np的最大整数)。样本分位数的一个重要应用是构造连续总体分布的非参数性容忍区间(见区间估计)。
U统计量
这是W.霍夫丁于1948年引进的,它在非参数统计中有广泛的应用。其定义是:设x1,x2,…,xn,为简单样本,m为不超过n的自然数,为m元对称函数,则称 为样本x1,x2,…,xn的以为核的U统计量。样本均值和样本方差都是它的特例。
从霍夫丁开始,这种统计量的大样本性质得到了深入的研究,主要应用于构造非参数性的量的一致最小方差无偏估计(见点估计),并在这种估计的基础上检验非参数性总体中的有关假设。
秩统计量
把样本X1,X2,…,Xn 按大小排列为,若 则称Ri为xi的秩,全部n个秩R1,R2,…,Rn构成秩统计量,它的取值总是1,2,…,n的某个排列。秩统计量是非参数统计的一个主要工具。
还有一些统计量是因其与一定的统计方法的联系而引进的。如假设检验中的似然比原则所导致的似然比统计量,K.皮尔森的拟合优度(见假设检验)准则所导致的Ⅹ统计量,线性统计模型中的最小二乘法所导致的一系列线性与二次型统计量,等等。
广告 您可能关注的内容 |