在双曲线C:x²/a²-y²/b²=1中过焦点垂直于实轴的弦长为2√3/3.?

 我来答
世纪网络17
2022-11-18 · TA获得超过5955个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:143万
展开全部
一条渐近线方程为:y=bx/a,
设该弦为AB,经过右焦点F2,∵上下关于X轴对称,|F2A|=|AB|/2=√3/3,右焦点坐标F2(c,0),
c^2/a^2-(1/3)/b^2=1,(1)
渐近线方程:bx-ay=0,
设右焦点至渐近线距离为d,
根据点线距离公式,d=bc-0|/√(a^2+b^2)=bc/c=b=1,
b=1,
代入(1)式,
c^2/√(c^2-1)-1/3=1,
c^2=4,
∴c=2.,6,在双曲线C:x²/a²-y²/b²=1中过焦点垂直于实轴的弦长为2√3/3.
焦点到一条渐近线的距离为1,求C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式