导数的切线方程是怎样得出的?
1个回答
展开全部
导数的切线方程公式:求出的导数值作为斜率k再用原来的点(x0,y0) ,切线方程就是(y-b)=k(x-a)。
导数的切线方程求求法
先算出来导数f'(x),导数的实质就是曲线的斜率,比如函数上存在一点(a.b),且该点的导数f'(a)=c那么说明在(a.b)点的切线斜率k=c,假设这条切线方程为y=mx+n,那么m=k=c,且ac+n=b,所以y=cx+b-ac
公式:求出的导数值作为斜率k再用原来的点(x0,y0) ,切线方程就是(y-b)=k(x-a)
导数的运算法则
减法法则:(f(x)-g(x))'=f'(x)-g'(x)
加法法则:(f(x)+g(x))'=f'(x)+g'(x)
乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
除法法则:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询