求∫e^(- x^2) dx的导数

 我来答
崇元化65
高粉答主

2023-04-06 · 说的都是干货,快来关注
知道小有建树答主
回答量:202
采纳率:100%
帮助的人:3万
展开全部

解析:

∫e^(-x^2)dx=(-1/2)∫de^(-x^2)/x

=(-1/2)e^(-x^2)/x -(1/2)∫e^(-x^2)dx/x^2

=(-1/2)e^(-x^2)/x-(1/4)e^(-x^2)/x^3+(1/4)∫e^(-x^2)d(1/x^3)

=(-1/2)e^(-x^2)/x-(1/4)e^(-x^2)/x^3-(1/8)e^(-x^2)/x^4+(1/8)∫e^(-x^2)d(1/x^4)
x^2

=t   ∫e^(-x^2)d(1/x^4)

=∫e^(-t)d(1/t^2)=e^(-t)/t^2+∫e^(-t)dt/t^2

=e^(-t)/t^2-e^(-t)/t-∫e^(-t)dt/te^x

=1+x+x^2/2!+x^3/3!+x^4/4!+..+x^n/n!e^(-t)

=1+(-t)+(-t)^2/2!+(-t)^3/3!+..+(-t)^n/n!

∫e^(-t)dt/t=lnt-t -t^2/(2*2!)-t^3/(3*3!)-..-t^n/(n*n!)

所以∫e^(-x^2)dx=(-1/2)e^(-x^2)/x-(1/4)e^(-x^2)/x^3-(1/8)e^(-x^2)/x^4+(1/8)e^(-x^2)/x^4-(1/8)e^(-x^2)/x^2-(1/8)[ln(x^2)-x^2-(x^2)^2/(2*2!)-(x^2)^3/(3*3!)-..-(x^2)^n/(n*n!)]

扩展资料:

由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。

这表明G(x)与F(x)只差一个常数。因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞<C<+∞}。

由此可知,如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。

参考资料来源:百度百科-不定积分

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
西域牛仔王4672747
2023-04-07 · 知道合伙人教育行家
西域牛仔王4672747
知道合伙人教育行家
采纳数:30580 获赞数:146299
毕业于河南师范大学计算数学专业,学士学位, 初、高中任教26年,发表论文8篇。

向TA提问 私信TA
展开全部
微分与积分互为逆运算,
所以 ∫e^(-x^2)dx 的导数是 e^(-x^2) 。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式