函数极限为什么存在?
展开全部
函数极限存在的条件:
1、单调有界准则。函数在某一点极限存在的充要条件是函数左极限和右极限在某点都存在且相等,如果左右极限不相同、或者不存在。则函数在该点极限不存在。
2、夹逼准则。如能找到比目标版数列或者函数权大而有极限的数列或函数,并且又能找到比目标数列或者函数小且有极限的数列或者函数,那么目标数列或者函数必定存在极限。
函数极限求法介绍
利用函数连续性:直接将趋向值带入函数自变量中,此时要要求分母不能为0;通过已知极限:两个重要极限需要牢记;
采用洛必达法则求极限:洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。
函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的,常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。
以上内容参考 百度百科—函数极限
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询