用放缩法证明 二分之一减去N加1分之一
1个回答
展开全部
要证明:1/2-1/(n+1)<1/2^2+1/3^2+...+1/n^2<(n-1)/n
1/2^2+1/3^2+...+1/n^2
=1/(2*2)+1/(3*3)+...+1/(n*n)
>1/(2*3)+1/(3*4)+...+1/[n(n+1)]
=1/2-1/3+1/3-1/4+...+1/(n-1)-1/n+1/n-1/(n+1)
=1/2-1/(n+1)
因此1/2-1/(n+1)<1/2^2+1/3^2+...+1/n^2.
1/2^2+1/3^2+...+1/n^2
=1/(2*2)+1/(3*3)+...+1/(n*n)
<1/(1*2)+1/(2*3)+...+1/[(n-1)n]
=1-1/2+1/2-1/3+...+1/(n-2)-1/(n-1)+1/(n-1)-1/n
=1-1/n
=(n-1)/n
因此1/2^2+1/3^2+...+1/n^2<(n-1)/n
综上,1/2-1/(n+1)<1/2^2+1/3^2+...+1/n^2<(n-1)/n
1/2^2+1/3^2+...+1/n^2
=1/(2*2)+1/(3*3)+...+1/(n*n)
>1/(2*3)+1/(3*4)+...+1/[n(n+1)]
=1/2-1/3+1/3-1/4+...+1/(n-1)-1/n+1/n-1/(n+1)
=1/2-1/(n+1)
因此1/2-1/(n+1)<1/2^2+1/3^2+...+1/n^2.
1/2^2+1/3^2+...+1/n^2
=1/(2*2)+1/(3*3)+...+1/(n*n)
<1/(1*2)+1/(2*3)+...+1/[(n-1)n]
=1-1/2+1/2-1/3+...+1/(n-2)-1/(n-1)+1/(n-1)-1/n
=1-1/n
=(n-1)/n
因此1/2^2+1/3^2+...+1/n^2<(n-1)/n
综上,1/2-1/(n+1)<1/2^2+1/3^2+...+1/n^2<(n-1)/n
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询